Accurate Evaluation Method of Litz Coil AC Resistance in Wireless Power Transfer Magnetically-Coupled System
Chen Qingbin1, Fan Feng1, Wang Jinshuai1, Chen Wei1, Deng Xiaolong2
1. College of Electrical Engineering and Automation Fuzhou University Fuzhou 350108 China; 2. Fuzhou Changle District Electric Power Supply Branch Fuzhou 350200 China
Abstract:The winding loss of the wireless power transfer (WPT) magnetically-coupled system is an important part that affects the efficiency of the WPT system. However, there needs to be an effective evaluation method for winding loss (especially the winding loss of the Litz wire). This paper proposed a new method for evaluating the winding AC resistance. In this method, the electrical parameters of the WPT magnetically-coupled system were measured by a small signal instrument. The separation of the winding AC resistance and the additional core loss resistance under the measurement excitation signal was realized by core loss model calculation or finite element analysis (FEA) simulation. This method was suitable for evaluating the winding AC resistance of the WPT magnetically-coupled system and the air-gap inductor. The error between the FEA simulation results based on the 3-D air-gap inductor and the evaluation results of this method was less than 5%, which verified the proposed method. Finally, a 2kW WPT system prototype was built, and the correctness of Litz coil AC resistance extraction was verified by differential power.
陈庆彬, 范峰, 汪金帅, 陈为, 邓小龙. 无线电能传输磁耦合系统Litz线圈交流电阻精确评估方法[J]. 电工技术学报, 2022, 37(24): 6294-6305.
Chen Qingbin, Fan Feng, Wang Jinshuai, Chen Wei, Deng Xiaolong. Accurate Evaluation Method of Litz Coil AC Resistance in Wireless Power Transfer Magnetically-Coupled System. Transactions of China Electrotechnical Society, 2022, 37(24): 6294-6305.
[1] 薛明, 杨庆新, 章鹏程, 等. 无线电能传输技术应用研究现状与关键问题[J]. 电工技术学报, 2021, 36(8): 1547-1568. Xue Ming, Yang Qingxin, Zhang Pengcheng, et al.Application status and key issues of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1547-1568. [2] 周玮, 蓝嘉豪, 麦瑞坤, 等. 无线充电电动汽车V2G模式下光储直流微电网能量管理策略[J]. 电工技术学报, 2022, 37(1): 82-91. Zhou Wei, Lan Jiahao, Mai Ruikun, et al.Research on power management strategy of DC microgrid with photovoltaic, energy storage and EV-wireless power transfer in V2G mode[J]. Transactions of China Elec- trotechnical Society, 2022, 37(1): 82-91. [3] Shiba K, Nagato T, Tsuji T, et al.Energy transmission transformer for a wireless capsule endoscope: analysis of specific absorption rate and current density in biological tissue[J]. IEEE Transactions on Biomedical Engineering, 2008, 55(7): 1864-1871. [4] 吴丽君, 李冠西, 张朱浩伯, 等. 一种具有恒流恒压输出自切换特性的电动汽车无线电能传输系统拓扑[J]. 电工技术学报, 2020, 35(18): 3781-3790. Wu Lijun, Li Guanxi, Zhang Zhuhaobo, et al.A wireless power transfer system topology with auto- matic switching characteristics of constant current and constant voltage output for electric vehicle charging[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3781-3790. [5] 廖志娟, 冯其凯, 吴凡, 等. 磁耦合无线电能传输系统实本征态工作模式及能效特性分析[J]. 电力系统自动化, 2022, 46(3): 164-174. Liao Zhijuan, Feng Qikai, Wu Fan, et al Real eigenstate operating modes and energy efficiency characteristic analysis of magnetic coupling wireless power transfer system[J]. Automation of Electric Power Systems, 2022, 46(3): 164-174. [6] 谢文燕, 陈为. 基于组合补偿网络的抗偏移恒流输出无线电能传输系统研究[J]. 电工技术学报, 2022, 37(6): 1495-1512. Xie Wenyan, Chen Wei.Research on anti-offset constant-current output wireless power transfer system based on combined compensation network[J]. Transactions of China Electrotechnical Society, 2022, 37(6): 1495-1512. [7] 孙淑彬, 张波, 李建国, 等. 多负载磁耦合无线电能传输系统的拓扑发展和分析[J]. 电工技术学报, 2022, 37(8): 1885-1903. Sun Shubin, Zhang Bo, Li Jianguo, et al.Analysis and development on topologies of multi-load magnetic- coupling wireless power transfer system[J]. Transa- ctions of China Electrotechnical Society, 2022, 37(8): 1885-1903. [8] 谢文燕, 陈为. 全方向无线电能传输技术研究进展[J]. 电力系统自动化, 2020, 44(4): 202-215. Xie Wenyan, Chen Wei.Research progress of Omni- directional wireless power transfer technology[J]. Automation of Electric Power Systems, 2020, 44(4): 202-215. [9] 尹忠东, 魏文思, 王萍, 等. 考虑集肤效应和邻近效应的变压器绕组谐波损耗计算及实验研究[J]. 电力系统保护与控制, 2019, 47(4): 143-151. Yin Zhongdong, Wei Wensi, Wang Ping, et al.Calculation and experimental study on harmonic loss of transformer windings considering skin effect and proximity effect[J]. Power System Protection and Control, 2019, 47(4): 143-151. [10] Kavitha M, Bobba P B, Prasad D.A study on effect of coil structures and core configurations on parameters of wireless EV charging system[C]//2017 IEEE Transportation Electrification Conference (ITEC), Pune, 2017: 1-6. [11] 张文杰, 毕鲁飞, 吝伶艳, 等. 磁耦合谐振式无线电能传输系统磁耦合结构错位性能的研究[J]. 高电压技术, 2020, 46(11): 4087-4095. Zhang Wenjie, Bi Lufei, Lin Lingyan, et al.Research on misalignment performance of magnetic coupling structure in magnetically coupled resonant wireless power transfer system[J]. High Voltage Engineering, 2020, 46(11): 4087-4095. [12] Park S W, Wake K, Watanabe S.Incident electric field effect and numerical dosimetry for a wireless power transfer system using magnetically coupled resonances[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(9): 3461-3469. [13] 王智慧, 吕潇, 孙跃, 等. 谐振式无线电能传输系统损耗模型[J]. 电工技术学报, 2014, 29(9): 17-21. Wang Zhihui, Lü Xiao, Sun Yue, et al.Modeling of power loss in resonant wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2014, 29(9): 17-21. [14] Acero J, Hernandez P J, Burdio J M, et al.Simple resistance calculation in Litz-wire planar windings for induction cooking appliances[J]. IEEE Transactions on Magnetics, 2005, 41(4): 1280-1288. [15] Roßkopf A, Bär E, Joffe C.Influence of inner skin-and proximity effects on conduction in Litz wires[J]. IEEE Transactions on Power Electronics, 2014, 29(10): 5454-5461. [16] Roßkopf A, Bär E, Joffe C, et al.Calculation of power losses in Litz wire systems by coupling FEM and PEEC method[J]. IEEE Transactions on Power Electronics, 2016, 31(9): 6442-6449. [17] Acero J, Alonso R, Burdio J M, et al.Frequency- dependent resistance in Litz-wire planar windings for domestic induction heating appliances[J]. IEEE Transa- ctions on Power Electronics, 2006, 21(4): 856-866. [18] Lu Ming, Ngo K D T. Analytical calculation of proximity-effect resistance for planar coil with Litz wire and ferrite plate in inductive power transfer[J]. IEEE Transactions on Industry Applications, 2019, 55(3): 2984-2991. [19] Kawahara S, Umetani K, Hiraki E.AC resistance prediction of Litz wire planer spiral coil based on Litz wire loss model[C]//2020 23rd International Con- ference on Electrical Machines and Systems (ICEMS), Hamamatsu, 2020: 1541-1546. [20] 邓其军, 刘姜涛, 陈诚, 等. 应用于无线电能传输的Litz线平面矩形螺旋线圈高频电阻计算[J]. 电工技术学报, 2016, 31(11): 176-185. Deng Qijun, Liu Jiangtao, Chen Cheng, et al.High frequency resistance in Litz-wire planar rectangular solenoid coils for wireless power transfer[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(11): 176-185. [21] 王世山, 黄诗友, 谢少军. 类比有限元法求解铁氧体电感器磁场特征参数[J]. 中国电机工程学报, 2009, 29(6): 122-128. Wang Shishan, Huang Shiyou, Xie Shaojun.Solution of magnetic characteristic parameters using analogizing finite element method for ferrite core inductor[J]. Proceedings of the CSEE, 2009, 29(6): 122-128. [22] 陈恒林. EMI滤波器高频建模—寄生效应研究[D]. 杭州: 浙江大学, 2007. [23] Tan F D, Vollin J L, Cuk S M.Effective control of the error in a direct measurement of core-loss power[J]. IEEE Transactions on Magnetics, 1995, 31(3): 2280-2284. [24] 陈庆彬, 张伟豪, 叶逢春, 等. 结合变压器T网络模型的具有可变恒压增益特性的补偿网络参数确定新方法[J]. 中国电机工程学报, 2017, 37(15): 4483-4494, 4590. Chen Qingbin, Zhang Weihao, Ye Fengchun, et al.A new compensation network parameters design method with variable constant voltage gain characteristics based on transformer T model[J]. Proceedings of the CSEE, 2017, 37(15): 4483-4494, 4590.