[1] 高瞻, 李耀华, 葛琼璇, 等. 适用于大功率三电平中点钳位整流器的SVPWM和DPWM策略研究[J]. 电工技术学报, 2020, 35(23): 4864-4876.
Gao Zhan, Li Yaohua, Ge Qiongxuan, et al.Research on SVPWM and DPWM strategies suitable for high power three-level neutral point clamped rectifier[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4864-4876.
[2] 於锋, 朱晨光, 吴晓新, 等. 基于矢量分区的永磁同步电机三电平双矢量模型预测磁链控制[J]. 电工技术学报, 2020, 35(10): 2130-2140.
Yu Feng, Zhu Chenguang, Wu Xiaoxin, et al.Two-vector-based model predictive flux control of three-level based permanent magnet synchronous motor with sector subregion[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2130-2140.
[3] Chen Quan, Wang Qunjing, Li Guoli, et al.The control of unequal power losses distribution in three-level neutral-point-clamped VSC[C]//2012 15th International Conference on Electrical Machines and Systems, Sapporo, 2012: 1-5.
[4] Bruckner T, Bemet S.Loss balancing in three-level voltage source inverters applying active NPC switches[C]//2001 IEEE 32nd Annual Power Electronics Specialists Conference, Vancouver, 2001: 1135-1140.
[5] 李科峰, 高山, 刘计龙, 等. 有源中点钳位五电平逆变器悬浮电容预充电控制策略[J]. 电工技术学报, 2022, 37(8): 2064-2075.
Li Kefeng, Gao Shan, Liu Jilong, et al.Floating capacitor pre-charging control strategy for five-level active neutral-point-clamped inverter[J]. Transactions of China Electrotechnical Society, 2022, 37(8): 2064-2075.
[6] 李倩倩, 夏蓉花, 刘战, 等. 有源中点钳位型三电平并网逆变器多目标优化预测控制[J]. 电气技术, 2021, 22(7): 13-18.
Li Qianqian, Xia Ronghua, Liu Zhan, et al.Multi-objective optimal model predictive control for active neutral-point-clamped three-level inverter[J]. Electrical Engineering, 2021, 22(7): 13-18.
[7] 徐帅, 孙振耀, 姚春醒, 等. 基于混合载波调制的三电平ANPC逆变器开路故障容错控制策略[J]. 中国电机工程学报, 2021, 41(15): 5329-5340.
Xu Shuai, Sun Zhenyao, Yao Chunxing, et al.Open-switch fault-tolerant control strategy for three-level ANPC inverter based on hybrid carrier modulation[J]. Proceedings of the CSEE, 2021, 41(15): 5329-5340.
[8] 罗龙, 李耀华, 李子欣, 等. 有源中点钳位型三电平逆变器开关器件损耗均衡调制方法[J]. 电工电能新技术, 2021, 40(4): 1-9.
Luo long, Li Yaohua, Li Zixin, et al. Loss equalization modulation method for switching devices of active neutral point clamped three-level inverter[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40(4): 1-9.
[9] 关清心. SiC & Si器件混合型高效率低成本中点钳位型三电平电路研究[D]. 武汉: 华中科技大学, 2018.
[10] Novak M, Šunde V, Čobanov N, et al.Semiconductor loss distribution evaluation for three level ANPC converter using different modulation strategies[C]//2017 19th International Conference on Electrical Drives and Power Electronics, Dubrovnik, 2017: 170-177.
[11] Floricau D, Floricau E, Dumitrescu M.Natural doubling of the apparent switching frequency using three-level ANPC converter[C]//2008 International School on Nonsinusoidal Currents and Compensation, Lagow, 2008: 1-6.
[12] 娄修弢, 张犁, 陈永炜, 等. 4-SiC 3L-ANPC逆变器损耗均衡和效率优化调制策略[J]. 中国电机工程学报, 2022, 42(5): 1925-1933.
Lou Xiuzhen, Zhang Li, Chen Yongwei, et al.A dedicate modulation scheme for 4-SiC 3L-ANPC inverter with loss balanced distribution and efficiency improvement[J]. Proceedings of the CSEE, 2022, 42(5): 1925-1933.
[13] Deng Yi, Li Jun, Shin K H, et al.Improved modulation scheme for loss balancing of three-level active NPC converters[J]. IEEE Transactions on Power Electronics, 2017, 32(4): 2521-2532.
[14] Zhang Gang, Yang Yongheng, Iannuzzo F, et al.Loss distribution analysis of three-level active neutral-point-clamped (3L-ANPC) converter with different PWM strategies[C]//2016 IEEE 2nd Annual Southern Power Electronics Conference, Auckland, 2016: 1-6.
[15] Ma L, Kerekes T, Rodriguez P, et al.A new PWM strategy for grid-connected half-bridge active NPC converters with losses distribution balancing mechanism[J]. IEEE Transactions on Power Electronics, 2015, 30(9): 5331-5340.
[16] Jiao Yang, Lu Sizhao, Lee F C.Switching performance optimization of a high power high frequency three-level active neutral point clamped phase leg[J]. IEEE Transactions on Power Electronics, 2014, 29(7): 3255-3266.
[17] Jiao Yang, Lee F C.New modulation scheme for three-level active neutral-point-clamped converter with loss and stress reduction[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5468-5479.
[18] Chen Mengxing, Pan Donghua, Wang Huai, et al.Investigation of switching oscillations for silicon carbide MOSFETs in three-level active neutral-point-clamped inverters[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(4): 4839-4853.
[19] Zhang Di, He Jiangbiao, Madhusoodhanan S.Three-level two-stage decoupled active NPC converter with Si IGBT and SiC MOSFET[J]. IEEE Transactions on Industry Applications, 2018, 54(6): 6169-6178.
[20] Guan Qingxin, Li Chushan, Zhang Yu, et al.An extremely high efficient three-level active neutral-point-clamped converter comprising SiC and Si hybrid power stages[J]. IEEE Transactions on Power Electronics, 2018, 33(10): 8341-8352.
[21] Woldegiorgis D, Wu Yuheng, Wei Yuqi, et al.A high efficiency and low cost ANPC inverter using hybrid Si/SiC switches[J]. IEEE Open Journal of Industry Applications, 2021, 2: 154-167.
[22] Zhang Li, Lou Xiutao, Li Chushan, et al.Evaluation of different Si/SiC hybrid three-level active NPC inverters for high power density[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 8224-8236.
[23] Zhang Di, He Jiangbiao, Pan Di.A megawatt-scale medium-voltage high-efficiency high power density “SiC+Si” hybrid three-level ANPC inverter for aircraft hybrid-electric propulsion systems[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 5971-5980.
[24] Feng Zhijian, Zhang Xing, Yu Shaolin, et al.Comparative study of 2SiC&4Si hybrid configuration schemes in ANPC inverter[J]. IEEE Access, 2020, 8: 33934-33943.
[25] Belkhode S, Shukla A, Doolla S.Enhanced hybrid active-neutral-point-clamped converter with optimized loss distribution-based modulation scheme[J]. IEEE Transactions on Power Electronics, 2021, 36(3): 3600-3612.
[26] 马昆, 施永, 苏建徽, 等. 考虑寄生参数的功率MOSFET开关损耗简化计算方法[J]. 电工技术学报, 2021, 36(增刊2): 591-599, 609.
Ma Kun, Shi Yong, Su Jianhui, et al.Simplified model of power MOSFET switching loss considering the parasitic parameters[J]. Transactions of China Electrotechnical Society, 2021, 36(S2): 591-599, 609. |