The Optimal Model Based on Waste Resourceful and Urban Multi-Energy System Collaborative
Wang Zedi1, Teng Yun1, Yan Jiajia1, Chen Zhe2
1. School of Electrical Engineering Shenyang University of Technology Shenyang 110870 China; 2. Depth Energy Technology Aalborg University Aalborg DK-9220 Denmark
Abstract:With the promotion of urban multi-energy system and the expansion of energy supply scale of waste disposal facilities. Considering the coordinated optimization of waste resourceful with urban multi-energy system, which is one of the important ways to improve waste disposal capacity and resource utilization level and the comprehensive energy supply efficiency. The waste disposal system is equivalent to a waste resourceful energy supply system (WRESS) in this paper, and a collaborative optimization model between multi-energy system and multi-energy storage system and waste resourceful energy supply system is established. Firstly, a waste resourceful energy supply model is established by the research of the relationship between the refuse output, the maximum permitted stock, the corresponding energy supply types and characteristics in a certain time scale. Then, in allusion to the relationship between the regulation characteristics of waste resourceful energy and the coordination of multi-energy system and multi-energy storage system, a collaborative optimization model with the lowest total operation and regulation cost of multi-energy system and waste resourceful energy supply system is established. Finally, based on the actual waste disposal and multi energy operation data of a city in China, through three different scenarios of the numerical example to verify the effectiveness of the proposed model. The optimal simulation results show that the model can improve the waste disposal ability, meanwhile it can also reduce the operation cost of multi energy system and enhance the system regulation.
王泽镝, 滕云, 闫佳佳, 陈哲. 垃圾能源利用与城市多能源系统协同优化模型[J]. 电工技术学报, 2021, 36(21): 4470-4481.
Wang Zedi, Teng Yun, Yan Jiajia, Chen Zhe. The Optimal Model Based on Waste Resourceful and Urban Multi-Energy System Collaborative. Transactions of China Electrotechnical Society, 2021, 36(21): 4470-4481.
[1] 蔡游明, 李征, 蔡旭. 计及控制时间窗内功率波动的风电场群无功电压分层优化控制[J]. 电工技术学报, 2019, 34(6): 1240-1250. Cai Youming, Li Zheng, Cai Xu.Voltage hierarchical optimal control of a wind farm cluster in account of voltage fluctuation in control time window[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1240-1250. [2] 滕云, 张铁岩, 陈哲. 多能源互联系统优化运行与控制技术研究现状与前景展望[J]. 可再生能源, 2018, 36(3): 467-474. Teng Yun, Zhang Tieyan, Chen Zhe.Research status and prospects of the optimization and operation of multi-energy interconnected systems[J]. Renewable Energy, 2018, 36(3): 467-474. [3] Huang Wujing, Zhang Ning, Yang Jingwei, et al.Optimal configuration planning of multi-energy systems considering distributed renewable energy[J]. IEEE Transactions on Smart Grid, 2017, 10(2): 1452-1464. [4] 金红洋, 滕云, 冷欧阳, 等. 基于源荷不确定性状态感知的无废城市多能源协调储能模型[J]. 电工技术学报, 2020, 35(13): 2830-2842. Jin Hongyang, Teng Yun, Leng Ouyang, et al.Multi-energy coordinated energy storage model in zero-waste cities based on situation awareness of source and load uncertainty[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2830-2842. [5] 张羽飞, 邵蕾, 冷凇凝, 等. 山东省畜禽粪便资源评估及肥料化与能源化利用潜力分析[J]. 中国沼气, 2019, 37(3): 93-99. Zhang Yufei, Shao Lei, Leng Songning, et al.Assessment of livestock and poultry excrement resources in shandong and its fertilizer and enemy utilization potential[J]. China Biogas, 2019, 37(3): 93-99. [6] 冉毅, 蔡萍, 黄家鹄. 国内外沼气提纯生物天然气技术研究及应用[J]. 中国沼气, 2016, 34(5): 61-66. Ran Yi, Cai Ping, Huang Jiahu.A review on research and application of biogas upgrading technologies in china and abroad[J]. China Biogas, 2016, 34(5): 61-66. [7] 许文君, 胡俊峰. 垃圾焚烧发电厂环境问题应对措施[J]. 山西电力, 2017(6): 56-58. Xu Wenjun, Hu Junfeng.Treatment of environmental problems caused by waste incineration power plants[J]. Shanxi Electric Power, 2017(6): 56-58. [8] 林大卫. 生活垃圾焚烧发电厂的建筑设计新探索——以上海老港再生能源利用中心二期为例[J]. 建筑技艺, 2019(6): 118-120. Lin Dawei.Design exploration about waste incineration power plant: Shanghai Laogang renewable energy utilization center phase II[J]. Architecture Technique, 2019(6): 118-120. [9] 张露岚, 吴仕宏, 吴佳文, 等. 光伏/光热与沼气联合发电系统的设计与仿真[J]. 可再生能源, 2017, 35(9): 1296-1303. Zhang Lulan, Wu Shihong, Wu Jiawen, et al.Design and simulation of the photovoltaic/thermal with biogasunit power generation system[J]. Renewable Energy Resources, 2017, 35(9): 1296-1303. [10] 冯智慧, 吕林, 许立雄. 基于能量枢纽的沼-风-光全可再生能源系统日前-实时两阶段优化调度模型[J]. 电网技术, 2019, 43(9): 3101-3109. Feng Zhihui, Lü Lin, Xu Lixiong.Two-stage optimal dispatch model of day-ahead and real-time for biogas-wind-solar fully renewable energy system based on energy hub[J]. Power System Technology, 2019, 43(9): 3101-3109. [11] 周志超, 王成山, 焦冰琦, 等. 风柴储生物质独立微网系统的优化控制[J]. 中国电机工程学报, 2015, 35(14): 3605-3615. Zou Zhichao, Wang Chengshan, Jiao Bingqi, et al.Optimal control of wind/biomass/diesel/battery stand-alone microgrid system[J]. Proceedings of the CSEE, 2015, 35(14): 3605-3615. [12] 许健, 施锦月, 张建华, 等. 基于生物质热电混合供能的城镇综合能源双层优化[J]. 电力系统自动化, 2018, 42(14): 23-31. Jiang Chao, Xue Yusheng, Huang Jie, et al.Carbon market risk analysis and control part II sand table simulation[J]. Automation of Electric Power Systems, 2018, 42(14): 23-31. [13] 李建林, 牛萌, 周喜超, 等. 能源互联网中微能源系统储能容量规划及投资效益分析[J]. 电工技术学报, 2020, 35(4): 874-884. Li Jianlin, Niu Meng, Zhou Xichao, et al.Energy storage capacity planning and investment benefit analysis of micro-energy system in energy interconnection[J]. Transactions of China Elect-rotechnical Society, 2020, 35(4): 874-884. [14] Clegg S, Mancarella P.Integrated modeling and assessment of the operational impact of power-to-gas(P2G)on electrical and gas transmission networks[J]. IEEE Transactions on Sustainable Energy, 2015, 6(4): 1234-1244. [15] 袁铁江, 李国军, 张增强, 等. 风电-氢储能与煤化工多能耦合系统设备投资规划优化建模[J]. 电工技术学报, 2016, 31(14): 21-30. Yuan Tiejiang, Li Guojun, Zhang Zengqiang, et al.Optimal modeling on equipment investment planning of wind power-hydrogen energy storage and coal chemical pluripotent coupling system[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 21-30. [16] 滕云, 王泽镝, 金红洋, 等. 用于电网调节能力提升的电热氢多源协调储能系统模型[J]. 中国电机工程学报, 2019, 29(24): 7209-7217. Teng Yun, Wang Zedi, Jin Hongyang, et al.Multi energy storage system model based on electricity heat and hydrogen coordinated optimization for power grid flexibility[J]. Proceedings of the CSEE, 2019, 29(24): 7209-7217. [17] 周贤正, 郭创新, 董树锋, 等. 考虑配电网重构的城市多能源配电/气/热网扩展规划[J]. 电力系统自动化, 2019, 43(7): 23-37. Zhou Xianzheng, Chen Wei, Guo Chuangxin, et al.Expansion planning of urban multi-energy electricity-gas-heating distribution network incorporating electrical reconfiguration[J]. Automation of Electric Power Systems, 2019, 43(7): 23-37. [18] 周贤正, 陈玮, 郭创新. 考虑供能可靠性与风光不确定性的城市多能源系统规划[J]. 电工技术学报, 2019, 34(17): 3672-3686. Zhou Xianzheng, Chen Wei, Guo Chuangxin.An urban multi-energy system planning method incorporating energy supply reliability and wind-photovoltaic generators uncertainty[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3672-3686. [19] 胡静哲, 王旭, 蒋传文, 等. 计及综合能源服务商参与的电力系统低碳经济调度[J]. 电网技术, 2020, 44(2): 514-521. Hu Jingzhe, Wang Xu, Jiang Chuanwen, et al.Low-carbon economic dispatch of power system considering participation of integrated energy service providers[J]. Power System Technology, 2020, 44(2): 514-521. [20] Eduardo A, Martínez C, Pierluigi M.Energy systems integration in smart districts: robust optimisation of multi-energy flows in integrated electricity, heat and gas networks[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 1122-1131. [21] 韩佶, 苗世洪, 李超, 等. 计及相关性的电-气-热综合能源系统概率最优能量流[J]. 电工技术学报, 2019, 34(5): 1055-1067. Han Ji, Miao Shihong, Li Chao, et al.Probabilistic optimal energy flow of electricity-gas-heat integrated energy system considering correlation[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1055-1067. [22] 雍静, 赵瑾, 郇嘉嘉, 等. 基于混沌增强烟花算法的多能源系统并网优化调度[J]. 电网技术, 2019, 43(10): 3725-3733. Yong Jing, Zhao Jin, Huan Jiajia, et al.Multi-energy system optimal dispatch based on chaos enhanced firework algorithm in grid-connected[J]. Power System Technology, 2019, 43(10): 3725-3733.