Abstract:In order to solve the problem of reactive charge current and overvoltage in wind farm AC collection grid, all-DC wind farm using DC collection and transmission is becoming a viable option for large-scale offshore wind power collection and integrating to grid. In this paper, a novel coordinated control method for all-DC farm has been proposed to solve the problem of inertia loss. This method included inertial synchronization control of onshore converter station, fast voltage regulation of DC booster station, inertial response and primary frequency regulation control of DC wind turbine. With this method, the all-DC wind farm behaved like a synchronous generator (SG) with the capability of inertial response and primary frequency regulation, which realized the voltage source control of all-DC wind farm. An all-DC wind farm test system was modeled in PSCAD/EMTDC software, which proved the validity of proposed control strategy.
杨仁炘, 施刚, 蔡旭. 海上全直流型风电场的电压源型控制[J]. 电工技术学报, 2018, 33(zk2): 546-557.
Yang Renxin, Shi Gang, Cai Xu. Voltage Source Control of Offshore All-DC Wind Farm. Transactions of China Electrotechnical Society, 2018, 33(zk2): 546-557.
[1] Flourentzou N, Agelidis V G, Demetriades G D.VSC-based HVDC power transmission systems: an overview[J]. IEEE Transactions on Power Electronics, 2009, 24(3): 592-602. [2] 吕敬, 施刚, 蔡旭, 等. 大型风电场经VSC-HVDC交直流并联系统并网的运行控制策略[J]. 电网技术, 2015, 39(3): 639-646. Lü Jing, Shi Gang, Cai Xu, et al.Control strategies of large wind farms integration through AC/DC parallel transmission system based on VSC-HVDC[J]. Power System Technology, 2015, 39(3): 639-646. [3] 黄玲玲, 曹家麟, 符杨. 海上风电场电气系统现状分析[J]. 电力系统保护与控制, 2014, 42(10): 147-154. Huang Lingling, Cao Jialin, Fu Yang.Review of electrical systems for offshore wind farms[J]. Power System Protection and Control, 2014, 42(10): 147-154. [4] 蔡旭, 施刚, 迟永宁, 等. 海上全直流型风电场的研究现状与未来发展[J]. 中国电机工程学报, 2016, 36(8): 2036-2048. Cai Xu, Shi Gang, Chi Yongning, et al.Present status and future development of offshore all-DC wind farm[J]. Proceedings of the CSEE, 2016, 36(8): 2036-2048. [5] 常怡然, 蔡旭. 大型海上全直流风场中基于MMC的风力发电变流器及其控制[J]. 中国电机工程学报, 2016, 36(14): 3789-3797. Chang Yiran, Cai Xu.MMC Based wind power converters for offshore DC wind farms[J]. Pro- ceedings of the CSEE, 2016, 36(14): 3789-3797. [6] 杨仁炘, 孙长江, 蔡旭, 等. 应用于海上直流风场的模块化多电平多端口直流变电站拓扑探究[J]. 中国电机工程学报, 2016, 36(增刊1): 61-68. Yang Renxin, Sun Changjiang, Cai Xu, et al.Exploration on Topologies of modular multilevel multi-port DC-DC substations applied in offshore DC wind farm[J]. Proceedings of the CSEE, 2016, 36(S1): 61-68. [7] 叶瑞丽, 刘瑞叶, 刘建楠, 等. 直驱风电机组风电场接入后的电力系统暂态稳定计算[J]. 电工技术学报, 2014, 29(6): 211-218. Ye Ruili, Liu Ruiye, Liu Jiannan, et al.Transient stability calculation of power system integrated with direct-drive wind farm with permanent magnet synchronous generators[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 211-218. [8] 米增强, 刘力卿, 余洋, 等. 限电弃风工况下双馈风电机组有功及调频控制策略[J]. 电工技术学报, 2015, 30(15): 81-88. Mi Zengqiang, Liu liqing, Yu Yang, et al. The control strategy of active power and frequency regulation of DFIG under wind abandon condition[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 81-88. [9] Lee J, Muljadi E, Srensen P, et al.Releasable kinetic energy-based inertial control of a DFIG wind power plant[J]. IEEE Transactions on Sustainable Energy, 2016, 7(1): 279-288. [10] 奚鑫泽, 耿华, 杨耕. 含主动轴系扭振阻尼的并网双馈风电场惯量控制方法[J]. 电工技术学报, 2017, 32(6): 136-144. Xi Xinze, Geng Hua, Yang Geng.Inertia control of the grid connected doubly fed induction generator based wind farm with drive-train torsion active damping[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 136-144. [11] 张冠锋, 杨俊友, 孙峰, 等. 基于虚拟惯量和频率下垂控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2017, 32(22): 225-232. Zhang Guanfeng, Yang Junyou, Sun Feng, et al.Primary frequency regulation strategy of dfig based on virtual inertia and frequency droop control[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 225-232. [12] 王晓东, 李凯凯, 刘颖明, 等. 基于状态观测器的风电机组单机储能系统虚拟惯量控制[J]. 电工技术学报, 2018, 33(6): 1257-1264. Wang Xiaodong, Li Kaikai, Liu Yingming, et al.Virtual inertia control of energy storage system in wind turbine based on extended state observer[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1257-1264. [13] Castro L M, Acha E.On the provision of frequency regulation in low inertia AC grids using HVDC systems[J]. IEEE Transactions on Smart Grid, 2015, DOI: 10.1109/TSG.2015.2495243. [14] 李宇骏, 杨勇, 李颖毅, 等. 提高电力系统惯性水平的风电场和VSC-HVDC协同控制策略[J]. 中国电机工程学报, 2014, 34(34): 6021-6031. Li Yujun, Yang Yong, Li Yingyi, et al.Coordinated control of wind farms and VSC-HVDC to improve inertia level of power system[J]. Proceedings of the CSEE, 2014, 34(34): 6021-6031. [15] 张武其, 吕洋. 向弱电网供电的 VSC-HVDC 系统的模拟惯量控制策略研究[J]. 电力系统保护与控制, 2016, 44(6): 104-110. Zhang Wuqi, Lü Yang.Emulation inertia control strategy for VSC-HVDC supplying weak network[J]. Power System Protection and Control, 2016, 44(6): 104-110. [16] 杨仁炘, 张琛, 蔡旭. 具有频率实时镜像和自主电网同步能力的风场-柔直系统控制方法[J]. 中国电机工程学报, 2017, 37(2): 496-505. Yang Renxin, Zhang Chen, Cai Xu.Control of VSC- HVDC with real-time frequency mirroring and self- synchronizing capability for wind farm integration[J]. Proceedings of the CSEE, 2017, 37(2): 496-505. [17] Sasongko F, Hagiwara M, Akagi H.A front-to-front (FTF) system consisting of two modular multilevel cascade converters based on double-star chopper- cells[C]//2013 1st International Future Energy Elec- tronics Conference, IEEE, Tainan, 2013: 488-493. [18] Kenzelmann S, Rufer A, Dujic D, et al.Isolated DC/DC structure based on modular multilevel converter[J]. IEEE Transactions on Power Elec- tronics, 2015, 30(1): 89-98. [19] Gowaid I A, Adam G P, Massoud A M, et al.Quasi two-level operation of modular multilevel converter for use in a high-power DC transformer with DC fault isolation capability[J]. IEEE Transactions on Power Electronics, 2015, 30(1): 108-123. [20] 孙长江, 张建文, 蔡旭, 等. 隔离型MMC直流变压器的电流源运行[J]. 中国电机工程学报, 2016, 36(7): 1977-1986. Sun Changjiang, Zhang Jianwen, Cai Xu, et al.Current-fed operation of isolated MMC-based DC transformer[J]. Proceedings of the CSEE, 2016, 36(7): 1977-1986. [21] Holtsmark N, Bahirat H J, Molinas M, et al.An all-DC offshore wind farm with series-connected turbines: an alternative to the classical parallel AC model[J]. IEEE Transactions on Industrial Elec- tronics, 2013, 60(6): 2420-2428. [22] Barrera-Cardenas R, Molinas M.Comparative study of wind turbine power converters based on medium frequency AC-link for offshore DC-grids[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(2): 525-541. [23] 常怡然, 蔡旭. 具有高变压比的分叉结构模块化多电平变换器[J]. 中国电机工程学报, 2017, 37(4): 1187-1196. Chang Yiran, Cai Xu.Bifurcate modular multilevel converter with high voltage conversion ratio[J]. Proceedings of the CSEE, 2017, 37(4): 1187-1196. [24] 赵嘉兴, 高伟, 上官明霞, 等. 风电参与电力系统调频综述[J]. 电力系统保护与控制, 2017, 45(21): 157-169. Zhao Jiaxing, Gao Wei, Shangguan Mingxia, et al.Review on frequency regulation technology of power grid by wind farm[J]. Power System Protection and Control, 2017, 45(21): 157-169. [25] 赵冬梅, 许瑞庆, 郑立鑫. 全风况下双馈风力机参与调频的协调控制策略研究[J]. 电力系统保护与控制, 2017, 45(12): 53-59. Zhao Dongmei, Xu Ruiqing, Zheng Lixin.Research on coordinated control strategy for DFIGs partici- pating in system frequency regulation with different wind[J]. Power System Protection and Control, 2017, 45(12): 53-59. [26] EON Netz GmbH. Grid code-high and extra high voltage[EB/OL]. 2006-06-12. http://www.nerc.com/ docs/pc/ivgtf/German_EON_Grid_Code.pdf. [27] Hydro-Qu é bec TransÉnergie. Technical require- ments for the connection of generation facilities to the Hydro-Quebec transmission system: supply requirements for wind generation[EB/OL]. 2003-04-05. http://www.hydroquebec.com/transenergie/fr/commerce/pdf/exigence_raccordement_fev_09_en.pdf. [28] National Grid (Great Britain). Grid code documents: connection conditions[EB/OL].2018-05. https://www. nationalgrid.com/sites/default/files/documents/00_FULL_GRID_CODE_I5R22_1.pdf.