Normalized Analysis and Design of DCM-LCC Resonant Converter Based on Critical Current Mode
Zhang Hongyin1, Tong Chaonan1, Wang Zeting2
1.School of Automation and Electrical Engineering University of Science and Technology Beijing Beijing 100083 China; 2.Power Electronics and Motor Drives Engineering Research Center Beijing North China University of Technology Beijing 100144 China
Abstract:In order to study the gain characteristic of the LCC series-parallel resonant converter operated in discontinues current mode (DCM), a normalized model of the LCC resonant tank under different working modes was established through the two parameters of resonant tank gain and resonant capacitance ratio. By introducing the principle of conservation of energy and critical current mode (CRM), a normalized resonant element parameter design model based on CRM was deduced. This model is accurate and simple, making it helpful to design the converter conveniently. The resulting description was subsequently used for the derivation of a design procedure that the frequency-gain characteristic curve of the LCC resonant tank under different modes, which is convenient to predict the output characteristics of resonant tank. Then taking a high-voltage power supply prototype with a rated output of 6kW/6kV for instance, this paper presents the specific design procedure in detail conducts experiments to test the parameter design. The experimental results verify the accuracy of the normalized design model of the resonant elements established. Moreover, the consistency of the calculation, simulation and experiment for the tank’s voltage gain curves corresponds well and verifies the validity of the proposed frequency-gain characteristic curves.
张洪寅, 童朝南, 王泽庭. 基于临界模态的DCM-LCC谐振变换器的归一化分析与设计[J]. 电工技术学报, 2019, 34(1): 103-115.
Zhang Hongyin, Tong Chaonan, Wang Zeting. Normalized Analysis and Design of DCM-LCC Resonant Converter Based on Critical Current Mode. Transactions of China Electrotechnical Society, 2019, 34(1): 103-115.
[1] 高铁峰, 张森, 赵剑峰, 等. LCC谐振变换器非对称移相控制及效率优化方法[J]. 电工技术学报, 2017, 32(8): 208-219.Gao Tiefeng, Zhang Sen, Zhao Jianfeng, et a1. Asymmetrical phase shift control and efficiency optimization strategy for LCC resonant converter[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 208-219. [2] 沈豫, 林国庆. 无极灯用LCCL谐振变换器特性分析与研究[J]. 电工技术学报, 2015, 30(3): 140-146.Shen Yu, Lin Guoqing. Analysis and research of LCCL resonant converter for electrodeless lamps[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 140-146. [3] 刘和平, 杨依路, 刘平, 等. 电除尘高压电源LCC 变换器电流断续模式分析[J]. 高电压技术, 2014, 40(11): 3506-3512. Liu Heping, Yang Yilu, Liu Ping, et a1. Analysis of LCC converter in current discontinuous mode in electrostatic precipitators high voltage power supply[J]. High Voltage Engineering, 2014, 40(31): 3506-3512. [4] 刘军, 郭瑭瑭, 常磊, 等. 高压变压器寄生电容对串联谐振变换器特性的影响[J]. 中国电机工程学报, 2012, 32(15):16-23. Liu Jun, Guo Tangtang, Chang Lei, et al. Effect of the parasitic capacitance on characteristics of series resonant converters[J]. Proceedings of the CSEE, 2012, 32(15): 16-23. [5] 张治国, 谢运祥, 袁兆梅. LCC 谐振变换器的电路特性分析[J]. 电工技术学报, 2013, 28(4): 50-57.Zhang Zhiguo, Xie Yunxiang, Yuan Zhaomei. Analysis of circuit characteristics of LCC resonant converter[J]. Transactions of China Electrotechnical Society, 2013, 28(4): 50-57. [6] Tan Xing, Ruan Xinbo.Optimal design of DCM LCC resonant converter with inductive filter based on mode boundary map[J]. IEEE Transactions on Power Electronics, 2015, 30(8): 4144-4155. [7] 陈武, 吴小刚, 蒋玮, 等. 一种适用于新能源并网的谐振升压变换器[J]. 电工技术学报, 2016, 31(8): 27-33. Chen Wu, Wu Xiaogang, Jiang Wei, et al. A step-up resonant converter for grid-connected renewable energy sources[J]. Transactions of China Electrotechnical Society, 2016, 31(8): 27-33. [8] Martin-Ramos J A, Pernia A M, Diaz J, et al. Power supply for a high-voltage application[J]. IEEE Transactions on Power Electron, 2008, 23(4): 1608-1619. [9] Dalessandro L, Cavalcante F D S, Kolar J W. Self-capacitance of high-voltage transformers[J]. IEEE Transactions on Power Electronics, 2007, 22(5): 2081-2092. [10] 朴政国, 户永杰, 郭裕祺. 一种基于并联谐振的高频隔离型并网逆变器[J]. 电工技术学报, 2018, 33(2): 322-330. Piao Zhengguo, Hu Yongjie, Guo Yuqi. High-frequency isolated grid-connected inverter based on parallel resonance[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 322-330. [11] 王德玉, 段元超, 高鹤, 等. LCC 谐振变换器电流输出特性研究与软开关实现[J]. 电工技术学报, 2018, 33(6): 1-13. Wang Deyu, Duan Yuanchao, Gao He, et a1. Current output characteristics and implementation of soft switch based on LCC resonant converter[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1-13. [12] 刘和平, 罗异, 刘庆, 等. 基于高频高压电除尘用LCC谐振电源特性的网侧整流方式比较[J]. 电力自动化设备, 2017, 37(5): 21-27. Liu Heping, Luo Yi, Liu Qing, et al. Grid-side rectification mode comparison based on characteristics of HF-HV LCC resonant power-supply for electrostatic precipitator[J]. Electric Power Automation Equipment, 2017, 37(5): 21-27. [13] 刘福才, 金书辉, 赵晓娟. LC 串联谐振和 LCC 串并联谐振在高压脉冲电容充电电源中的应用比较[J]. 高电压技术, 2012, 38(12): 3347-3356. Liu Fucai, Jin Shuhui, Zhao Xiaojuan. Comparison of LC series resonant and LCC series-parallel resonant in high-voltage pulse capacitor charging power supply application[J]. High Voltage Engineering, 2012, 38(12): 3347-3356. [14] 夏冰, 阮新波, 陈武. 高压大功率场合LCC谐振变换器的分析与设计[J]. 电工技术学报, 2009, 24(5): 60-66.Xia Bing, Ruan Xinbo, Chen Wu. Analysis and design of LCC resonant converter for high voltage and high power applications[J]. Transactions of China Electrotechnical Society, 2009, 24(5): 60-66. [15] 王泽庭, 刘鹏, 樊生文. 基于软开关技术的电子束焊机高压电源研究[J]. 电力电子技术, 2016, 50(2): 94-96. Wang Zeting, Liu Peng, Fan Shengwen. Research on high voltage power supply of electron beam welding based on soft-switching technology[J]. Power Electronics, 2016, 50(2): 94-96. [16] 刘军. LCC-SPRC 高压高频大功率电除尘电源的理论分析与功率参数设计[D]. 杭州: 浙江大学, 2010. [17] Yang Rui, Ding Hongfa, Xu Yun, et al.An analytical steady state model of LCC type series-parallel resonant converter with capacitive output filter[J]. IEEE Transactions on Power Electronics, 2014, 29(1): 328-338. [18] Gilbert A J, Bingham C M, Stone D A, et al.Normalized analysis and design of LCC resonant converters[J]. IEEE Transactions on Power Electronics, 2007, 22(6): 2386-2402. [19] Belaguli V, Bhat A K S. Series-parallel resonant converteroperating in discontinuous current mode. analysis, design, simulation, and experimental results[J]. IEEE Transactions on Circuits and System, 2000, 47(4): 433-442. [20] Fan Shengwen, Li Haisi, Wang Zeting, et al.Time domain analysis and efficiency research of high voltage power supply for electron beam welder based on LCC resonance in DCM[C]// 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW: 2017: 1-5. [21] Williams D R, Bingham C, Stone D A, et al.Analysis of dual-output resonant power converters through use of linear load approximations[J]. IEEE Transactions on Power Electronics, 2012, 27(9): 4051-4059. [22] Ivensky G, Bronshtein S, Abramovitz A.Approximate analysis of resonant LLC DC-DC converter[J]. IEEE Transactions on Power Electronics, 2011, 26(11): 3274-3284. [23] 辛德锋, 安昱, 郜亚秋, 等. 适用于ISOS拓扑的高压DC/DC变换器研究[J]. 电力系统保护与控制, 2017, 45(13): 64-70. Xin Defeng, An Yu, Gao Yaqiu, et al. Study on high voltage DC/DC converter based on ISOS topology[J]. Power System Protection and Control, 2017, 45(13): 64-70.