Abstract:Considering the nonlinear, saturation and coupled magnetization, this paper presents a radial basis function network-based adaptive fuzzy system(RBFN-AFS)to model the switched reluctance motor (SRM) and predict the performance in SRM drive system. Based on the measured SRM’s flux linkage and torque data, the RBFN-AFS is designed to learn and train the electromagnetic characteristics knowledge for the SRM by using the hierarchically self-organizing learning(HSOL)algorithm to determine the minimum necessary number of rules and adjust the mean and variance vectors of individual hidden nodes as well as their weights. After training, the RBFN-AFS forms a very efficient mapping structure for the nonlinear characteristics of the SRM. Lastly, a RBFN-AFS current-dependent inverse flux linkage model and a RBFN-AFS torque model are used to simulate the dynamic performance of a 6/4 0.55kW SRM. The simulation results and experimental waveforms are reported to validate the proposed RBFN-AFS modeling method for SRM. It also provides the application of analysis and real time control for SRM.
丁文, 梁得亮. 基于RBFN-AFS的开关磁阻电机非线性模型与动态仿真[J]. 电工技术学报, 2009, 24(9): 44-52.
Ding Wen, Liang Deliang. Modeling and Simulation of Switched Reluctance Motor Based on RBFN-AFS. Transactions of China Electrotechnical Society, 2009, 24(9): 44-52.
[1] Soares F, Costa Branco P J. Simulation of a 6/4 switched reluctance motor based on Matlab/Simulink environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3): 989-1007. [2] 谢德馨, 阎秀恪, 张奕黄, 等. 旋转电机绕组磁链的三维有限元分析[J]. 中国电机工程学报, 2006, 26(21): 143-148. [3] 吴建华. 开关磁阻电机设计与应用[M]. 北京:机械工业出版社, 2000. [4] 王宏华. 开关磁阻电动机调速控制技术[M]. 北京:机械工业出版社, 1995. [5] Chi H P, Lin R L, Chen J F. Simplified flux linkage model for switched reluctance motors[J]. IEE Proceedings of Electrical Power Application, 2005, 152(3): 577-583. [6] Xue X D, Cheng K W E, Ho S L. Trigonometry-based numerical method to compute nonlinear magnetic characteristics in switched reluctance motors[J]. IEEE Transactions on Magnetics, 2007, 43(4): 1845-1848. [7] Xue X D, Cheng K W E, Ho S L. Simulation of switched reluctance motor drives using two dimensional bicubic spline[J].IEEE Transactions on Energy Conversion, 2002, 17(4): 471-477. [8] 郑洪涛, 蔡际令, 蒋静坪. 基于变结构模糊神经网络的开关磁阻电动机非线性模型[J]. 电工技术学报, 2001, 16(6): 1-6. [9] 纪良文, 蒋静坪, 何峰. 基于径向基函数神经网络的开关磁阻电机建模[J]. 电工技术学报, 2001, 16(4): 7-11. [10] 蔡燕, 许镇琳, 高超. 基于神经网络非线性模型的开关磁阻电机调速系统动态仿真[J]. 电工技术学报, 2006, 21(8): 25-30. [11] 司利云, 林辉, 刘震. 基于最小二乘支持向量机的开关磁阻电动机建模[J]. 中国电机工程学报, 2007, 27(6): 26-30. [12] 闻新, 周露, 李翔, 等. MATLAB神经网络仿真与应用[M].北京:科学技术出版社, 2003.