Abstract:Modular multilevel converter (MMC) has been widely used due to its modularity, easy-to-expand structure and ideal sinusoidal output waveforms for high voltage direct current (HVDC) transmission. However, for high-voltage motor drive applications, MMC faces the problem of large capacitor voltage ripples at low speeds. A hybrid MMC (HMMC) topology has attracted attention because of its good capacitor voltage ripple suppression characteristics. This paper analyzes the characteristics of HMMC capacitor voltage ripple. The expressions of fundamental and second order components of capacitor voltage ripples are derived. Then the capacitor selection method is presented. In addition, from the aspects of the internal energy and circulation control of the HMMC and the external motor drive, this paper proposes an overall control method to efficiently and stably realize the high-voltage motor variable-frequency drives. The effectiveness of the proposed method is further verified by simulations and experiments.
周少泽, 李彬彬, 王景坤, 徐殿国. 改进型模块化多电平高压变频器及其控制方法[J]. 电工技术学报, 2018, 33(16): 3772-3781.
Zhou Shaoze, Li Binbin, Wang Jingkun, Xu Dianguo. A Hybrid Modular Multilevel High-Voltage Converter and Its Control Method. Transactions of China Electrotechnical Society, 2018, 33(16): 3772-3781.
[1] 李兴鹤, 蔡新波, 时迎亮, 等. 基于MMC技术的高压变频器系统[J]. 大功率变流技术, 2012(5): 17-22. Li Xinghe, Cai Xinbo, Shi Yingliang, et al.High- voltage inverter system based on MMC technology[J]. High Power Converter Technology, 2012(5): 17-22. [2] 马小亮. 中压变频器的问题及对策[J]. 电气传动, 2014, 44(1): 3-12. Ma Xiaoliang.Problems and solutions of medium voltage converters[J]. Electric Drive, 2014, 44(1): 3-12. [3] 徐殿国, 李彬彬, 周少泽. 模块化多电平高压变频技术研究综述[J]. 电工技术学报, 2017, 32(20): 104-116. Xu Dianguo, Li Binbin, Zhou Shaoze.Overview of the modular multilevel converter based high voltage motor drive[J]. Transactions of China Electro- technical Society, 2017, 32(20): 104-116. [4] 荣飞, 陈盼庆, 黄守道, 等. 一种减少电压互感器的模块化多电平换流器分组控制策略[J]. 电工技术学报, 2017, 18(32): 186-195. Rong fei, Chen Panqing, Huang Shoudao, et al. Sub- module grouping strategy for reducing the number of voltage sensors in modular multilevel converters[J]. Transactions of China Electrotechnical Society, 2017, 18(32): 186-195. [5] 胡畔, 陈红坤, 陈孟忻, 等. 基于动态相量法的改进多端模块化多电平换流器HVDC小干扰稳定模型[J]. 电工技术学报, 2017, 24(32): 192-204. Hu Pan, Chen Hongkun, Chen Mengxin, et al.Advanced small-signal stability model for multi- terminal modular converter-HVDC systems based on dynamic phasors[J]. Transactions of China Electro- technical Society, 2017, 24(32): 192-204. [6] 张建坡, 李耐心, 田新成. 电网电压不平衡条件下模块化多电平换流器高压直流输电控制策略[J]. 电工技术学报, 2016, 31(22): 205-212. Zhang Jianpo, Li Naixin, Tian Xincheng, et al.The control strategies of modular multilevel converter high voltage direct current transmission under unbalanced grid voltage conditions[J]. Transactions of China Electrotechnical Society, 2016, 31(22): 205-212. [7] 肖刚, 张译文, 郭育华, 等. 基于MMC的同相供电潮流控制器控制策略研究[J]. 电力系统保护与控制, 2017, 45(14): 79-84. Xiao Gang, Zhang Yiwen, Guo Yuhua, et al.Study on the control strategy of power flow controller based on MMC in co-phase power supply system[J].Power System Protection and Control, 2017, 45(14): 79-84. [8] 刘思源, 徐东旭, 梅念, 等. 直流侧故障对模块化多电平换流器的影响研究[J]. 电力系统保护与控制, 2017, 45(10): 48-54. Liu Siyuan, Xu Dongxu, Mei Nian, et al.Research on the effect of DC side fault on modular multilevel converter[J].Power System Protection and Control, 2017, 45(10): 48-54. [9] 林雪华, 洪国巍, 郭琦, 等. 基于改进MOPSO的MMC控制参数多机联合优化[J]. 电力系统保护与控制, 2017, 45(9): 48-55. Lin Xuehua, Hong Guowei, Guo Qi, et al.Multi- machine joint parameters optimization of MMC controller based improved MOPSO[J]. Power System Protection and Control, 2017, 45(9): 48-55. [10] Antonopoulos A, Angquist L, Norrga S, et al.Modular multilevel converter ac motor drives with constant torque from zero to nominal speed[C]//IEEE Energy Conversion Congress and Exposition, 2012: 739-746. [11] Huang X, Wang Z, Kong Z, et al. Modular multilevel converter with three-port power channels for medium-voltage drives[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017 , PP(99): 1-1. [12] Kumar Y S, Poddar G.Control of medium-voltage ac motor drive for wide speed range using modular multilevel converter[J]. IEEE Transactions on Indu- strial Electronics, 2017, 64(4): 2742-2749. [13] Kumar Y S, Poddar G.Medium-voltage vector control induction motor drive at zero frequency using modular multilevel converter[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 125-132. [14] Li B, Zhou S, Xu D, et al.An improved circulating current injection method for modular multilevel converters in variable-speed drives[J]. IEEE Transa- ctions on Industrial Electronics, 2016, 63(11): 7215-7225. [15] Debnath S, Qin J, Saeedifard M.Control and stability analysis of modular multilevel converter under low- frequency operation[J]. IEEE Transactions on Electronics, 2015, 62(9): 5329-5339. [16] Hagiwara M, Hasegawa I, Akagi H.Start-up and low-speed operation of an electric motor driven by a modular multilevel cascade inverter[J]. IEEE Transa- ctions on Industrial Electronics, 2013, 49(4): 1556-1565. [17] Hagiwara M, Nishimura K, Akagi H.A medium- voltage motor drive with a modular multilevel PWM inverter[J]. IEEE Transactions on Power Electronics, 2010, 25(7): 1786-1799. [18] Du S, Wu B, Tian K, et al.An active cross-connected modular multilevel converter (AC-MMC) for medium-voltage motor drive[J]. IEEE Transactions on Industrial Electronics, 2016, 63(8): 4707-4717. [19] Li B, Zhou S, Xu D, et al.A hybrid modular multilevel converter for medium-voltage variable- speed motor drives[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4619-4630. [20] Wu B.High power converters and AC drives[M]. Hoboken, New Jersey: Wiley-IEEE Press, 2006. [21] Hagiwara M, Akagi H.Control and experiment of pulse-width modulated modular multilevel con- verters[J]. IEEE Transactions on Power Electronics, 2009, 24(7): 1737-1746. [22] He L, Zhang K, Xiong J, et al.Low-frequency ripple suppression for medium-voltage dives using modular multilevel converter with full-bridge submodules[J]. IEEE Transactions on Power Electronics, 2016, 4(2): 657-667.