Abstract:In contrast with id=0 control, maximum torque per ampere control enables permanent magnet synchronous motor to output a larger low-speed torque and has a better dynamic performance under equivalent capacity. It is extremely suitable as the drive control for mechanical elastic energy storage system. A backstepping control based maximum torque per ampere control approach is proposed for permanent magnet synchronous motor. The relation equation of minimum d-axis and q-axis currents in maximum torque per ampere control is constructed through extremum principle. Simultaneous variations of torque and inertia for spiral torsion spring load are estimated through least square algorithm with forgetting factor. Conventional PI controllers of speed and current are replaced by designed backstepping controllers of speed and current respectively, and the stability of the proposed algorithm is proved in theory. Experimental results indicate that the proposed approach requires less stator current in comparison with backstepping based id=0 control. Additionally, the approach has the advantages of prompt tracking reference signals, good dynamic performance and fewer parameters adjustment.
余洋, 郭旭东, 郑晓明, 米增强. 基于反推控制的机械弹性储能永磁同步电机最大转矩电流比控制[J]. 电工技术学报, 2017, 32(22): 82-90.
Yu Yang, Guo Xudong, Zheng Xiaoming, Mi Zengqiang. Backstepping Control Based Maximum Torque Per Ampere Control of Permanent Magnet Synchronous Motor for Mechanical Elastic Energy Storage. Transactions of China Electrotechnical Society, 2017, 32(22): 82-90.
[1] 朱军, 田淼, 付融冰, 等. 基于载波频率成分的永磁同步电机转子定位研究[J]. 电力系统保护与控制, 2015, 43(14): 48-54. Zhu Jun, Tian Miao, Fu Rongbing, et al. Research on rotor position of permanent magnet synchronous motor based on carrier frequency component[J]. Power System Protection and Control, 2015, 43(14): 48-54. [2] 米增强, 余洋, 王璋奇, 等. 永磁电机式机械弹性储能机组及其关键技术初探[J]. 电力系统自动化, 2013, 37(1): 26-30. Mi Zengqiang, Yu Yang, Wang Zhangqi, et al. Preliminary exploration on permanent magnet motor based mechanical elastic energy storage unit and key technical issues[J]. Automation of Electric Power Systems, 2013, 37(1): 26-30. [3] Yu Yang, Mi Zengqiang, Guo Xudong, et al. Low speed control and implementation of permanent magnet synchronous motor for mechanical elastic energy storage device with simultaneous variations of inertia and torque[J]. IET Electric Power Appli- cations, 2016, 10(3): 172-180. [4] 陈炜, 艾士超, 谷鑫, 等. 基于最小电压矢量偏差的永磁同步电机直接转矩控制[J]. 电工技术学报, 2015, 30(14): 116-121. Chen Wei, Ai Shichao, Gu Xin, et al. Direct torque control for permanent magnet synchronous motor based on minimum vector deviation[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 116-121. [5] 宋卫章, 马宝剑, 王斌, 等. 矩阵变换器-永磁同步电机系统的S型滑模观测器矢量控制[J]. 电工技术学报, 2014, 29(8): 81-89. Song Weizhang, Ma Baojian, Wang Bin, et al. A novel S type sliding-mode observer used in vector control for two-stage matrix converter-permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2014, 29(8): 81-89. [6] Mohamed Y A R I, Lee T K. Adaptive self-tuning MTPA vector controller for IPMSM drive system[J]. IEEE Transactions on Energy Conversion, 2006, 21(3): 636-644. [7] 黄鹏, 苗长云, 黄雷, 等. 参数在线估算的永磁同步电机最大转矩电流比控制[J]. 煤炭学报, 2011, 36(1): 172-176. Huang Peng, Miao Changyun, Huang Lei, et al. Maximum-torque-per-ampere control of permanent magnet synchronous motors with online parameter estimation[J]. Journal of China Coal Society, 2011, 36(1): 172-176. [8] Butt C B, Hoque M A, Rahman M A. Simplified fuzzy-logic-based MTPA speed control of IPMSM drive[J]. IEEE Transactions on Industry Applications, 2004, 40(6): 1529-1535. [9] 张文娟, 冯垚径, 黄守道, 等. 基于迭代法的内置式永磁同步电机最大转矩/电流控制[J]. 电工技术学报, 2013, 28(增刊2): 402-407. Zhang Wenjuan, Feng Yaojing, Huang Shoudao, et al. The maximum torque per ampere control of permanent magnet synchronous motor based on interative method[J]. Transactions of China Electro- technical Society, 2013, 27(S2): 402-407. [10] 金宁治, 王旭东, 李文娟. 电动汽车PMSM MTPA控制系统滑模速度控制[J]. 电机与控制学报, 2011, 15(8): 52-58. Jin Ningzhi, Wang Xudong, Li Wenjun. Sliding model control of PMSM MPTA control system for electrical vehicles[J]. Electric Machines and Control, 2011, 15(8): 52-58. [11] 张伦健, 陈利萍. 基于智能PI的永磁同步电动机近似最大转矩电流比控制[J]. 微特电机, 2012, 40(8): 42-45. Zhang Lunjian, Chen Liping. Maximum torque per ampere control in permanent magnet synchronous motor based on intelligent PI controller[J]. Small and Special Electrical Machines, 2012, 40(8): 42-45. [12] 舒佳驰, 刘明基, 郭韩金. 基于模糊PI控制器的永磁同步电动机最大转矩电流比控制[J]. 电机与控制应用, 2014, 41(1): 9-13. Shu Jiachi, Liu Mingji, Guo Hanjin. Maximum torque per ampere control for permanent magnet synchronous motor based on fuzzy PI controller[J]. Electric Machines and Control Application, 2014, 41(1): 9-13. [13] 于海生, 赵克友, 郭雷, 等. 基于端口受控哈密顿方法的PMSM最大转矩/电流控制[J]. 中国电机工程学报, 2006, 26(8): 82-87. Yu Haisheng, Zhao Keyou, Guo Lei, et al. Maximum torque per ampere control of PMSM based on port-controlled Hamiltonian theory[J]. Proceedings of the CSEE, 2006, 26(8): 82-87. [14] 刘栋良, 王家军, 崔丽丽. 永磁同步电机参数自适应调速控制[J]. 电工技术学报, 2011, 26(8): 159- 165. Liu Dongliang, Wang Jiajun, Cui Lili. Speed tracking control of permanent magnet synchronous motors with adaptive parameters[J]. Transactions of China Electrotechnical Society, 2011, 26(8): 159-165. [15] Tong S C, He X L, Zhang H G. A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control[J]. IEEE Transactions on Fuzzy Systems, 2009, 17(5): 1059- 1069. [16] 刘栋良, 郑谢辉, 崔丽丽. 无速度传感器永磁同步电机反推控制[J]. 电工技术学报, 2011, 26(9): 67-72. Liu Dongliang, Zheng Xiehui, Cui Lili. Backstepping control of speed sensorless permanent magnet synchronous motor[J]. Transactions of China Electro- technical Society, 2011, 26(9): 67-72. [17] Zhou J, Wang Y. Adaptive backstepping speed controller design for a permanent magnet synchronous motor[J]. IEE Proceedings of Electric Power Appli- cations, 2002, 149(2): 165-172. [18] Karabacak M, Eskikurt H I. Design, modelling and simulation of a new nonlinear and full adaptive backstepping speed tracking controller for uncertain PMSM[J]. Applied Mathematical Modelling, 2012, 36(11): 5199-5213. [19] Muñoz-Guijosa J M, Caballero D F, de la Cruz V R, et al. Generalized spiral torsion spring model[J]. Mechanism and Machine Theory, 2012, 51: 110-130.