Prediction Model for Dissolved Gases Content in Transformer Oil Based on Twice Dimensionality Reduction
Tang Yongbo1,2, Xiong Yinguo1
1.School of Physical Science and Engineering Yichun University Yichun 336000 China 2.School of Information Science and Engineering Central South University Changsha 410083 China
Abstract:Aiming at the testing problem of dissolved gases content in transformer oil,a new prediction model based on twice dimensionality reduction was proposed.Firstly,mutual information variable selection method was used to select relevant input variables of the prediction model;Secondly,the relevant variables were reconstructed in the phase space where feature extraction was carried out by using kernel principal component analysis (KPCA) for the purpose of data dimension reduction,denoising and eliminating relativity of variables,meanwhile,the parameters of KPCA were determined by Renyi information entropy.At last,kernel extreme learning machine (KELM) was employed to forecast dissolved gases content in transformer oil,and kernel principal components were used as the inputs of KELM.Compared with gray model and the prediction model which only adopt variable selection method or feature extraction method,experimental results show that the proposed prediction model has a better prediction and generalization.
唐勇波, 熊印国. 基于二次维数约简的油中溶解气体浓度预测[J]. 电工技术学报, 2017, 32(21): 194-202.
Tang Yongbo, Xiong Yinguo. Prediction Model for Dissolved Gases Content in Transformer Oil Based on Twice Dimensionality Reduction. Transactions of China Electrotechnical Society, 2017, 32(21): 194-202.
[1] 石鑫,朱永利,萨初日拉,等.基于深度信念网络的电力变压器故障分类建模[J].电力系统保护与控制,2016,44(1):71-76. Shi Xin,Zhu Yongli,Sa Churila,et al.Power transformer fault classifying model based on deep belief network[J].Power System Protection and Control,2016,44(1):71-76. [2] 鲁宝春,赵深,田盈,等.优化系数的NGM(1,1,k)模型在中长期电量预测中的应用[J].电力系统保护与控制,2015,43(12):98-103. Lu Baochun,Zhao Shen,Tian Ying,et al.Mid-long term electricity consumption forecasting based on improved NGM(1,1,k) gray model[J].Power System Protection and Control,2015,43(12):98-103. [3] 肖燕彩,朱衡君,陈秀海.用灰色多变量模型预测变压器油中溶解的气体浓度[J].电力系统自动化,2006,30(13):64-67. Xiao Yancai,Zhu Hengjun,Chen Xiuhai.Concentration prediction of dissolved gas-in-oil of a power transformer with the multivariable grey model[J].Automation of Electric Power Systems,2006,30(13):64-67. [4] 邱思语,杨洪耕.改进的加权支持向量机回归的谐波发射水平估计方法[J].电工技术学报,2016,31(5):85-90. Qiu Siyu,Yang Honggeng.Assessment method of harmonic emission level based on the improved weighted support vector machine regression[J].Transactions of China Electrotechnical Society,2016,31(5):85-90. [5] Fei Shengwei,Sun Yu.Forecasting dissolved gases content in power transformer oil based on support vector machine with genetic algorithm[J].Electric Power Systems Research,2008,78(3):507-514. [6] Liao Ruijin,Zheng Hanbo,Grzybowski S,et al.Particle swarm optimization-least squares support vector regression based forecasting model on dissolved gases in oil-filled power transformers[J].Electric Power Systems Research,2011,81(12):2074-2080. [7] 唐勇波,桂卫华,彭涛,等.基于互信息变量选择的变压器油中溶解气体浓度预测[J].仪器仪表学报,2013,34(7):1492-1498. Tang Yongbo,Gui Weihua,Peng Tao,et al.Prediction method for dissolved gases content in transformer oil based on variable selection of mutual information[J].Chinese Journal of Scientific Instrument,2013,34(7):1492-1498. [8] 韩敏,王亚楠.基于储备池主成分分析的多元时间序列预测研究[J].控制与决策,2009,24(10):1526-1530. Han Min,Wang Ya’nan.Prediction of multivariate time series based on reservoir principal component analysis[J].Control and Decision,2009,24(10):1526-1530. [9] Choi S W,Lee C,Lee J M,et al.Fault detection and identification of nonlinear processes based on kernel PCA[J].Chemometrics and Intelligent Laboratory Systems,2005,75(1):55-67. [10]金立军,张达,段绍辉,等.基于红外与紫外图像信息融合的绝缘子污秽状态识别[J].电工技术学报,2014,29(8):309-318. Jin Lijun,Zhang Da,Duan Shaohui,et al.Recognition of contamination grades of insulators based on IR and UV image information fusion[J].Transactions of China Electrotechnical Society,2014,29(8):309-318. [11]李学军,李平,蒋玲莉.类均值核主元分析法及在故障诊断中的应用[J].机械工程学报,2014,50(3):123-129. Li Xuejun,Li Ping,Jiang Lingli.Class mean kernel principal component analysis and its application in fault diagnosis[J].Journal of Mechanical Engineering,2014,50(3):123-129. [12]高智勇,梁银林,高建民,等.基于集成熵KPCA的复杂机电系统状态监测方法[J].计算机集成制造系统,2015,21(5):1327-1333. Gao Zhiyong,Liang Yinlin,Gao Jianmin,et al.State monitoring of complex electromechanical system based on integrated entropy of KPCA[J].Computer Integrated Manufacturing Systems,2015,21(5):1327-1333. [13]Huang Guangbin,Zhu Qinyu,Siew C K.Extreme learning machine:theory and applications[J].Neurocomputing,2006,70(1):489-501. [14]李扬,李国庆,顾雪平,等.基于集成 OS-ELM 的暂态稳定评估方法[J].电工技术学报,2015,30(14):412-418. Li Yang,Li Guoqing,Gu Xueping,et al.Transient stability assessment of power systems based on ensemble OS-ELM[J].Transactions of China Electrotechnical Society,2015,30(14):412-418. [15]张翌晖,王贺,胡志坚,等.基于集合经验模态分解和改进极限学习机的短期风速组合预测研究[J].电力系统保护与控制,2014,42(10):29-34. Zhang Yihui,Wang He,Hu Zhijian,et al.A hybrid short-term wind speed forecasting model based on ensemble empirical mode decomposition and improved extreme learning machine[J].Power System Protection and Control,2014,42(10):29-34. [16]王琪,孙玉坤,倪福银,等.一种混合动力电动汽车电池荷电状态预测的新方法[J].电工技术学报,2016,31(9):189-196. Wang Qi,Sun Yukun,Ni Fuyin,et al.A new method of battery state of charge prediction in the hybrid electric vehicle[J].Transactions of China Electrotechnical Society,2016,31(9):189-196. [17]Huang Guangbin,Zhou Hongming,Ding Xiaojian,et al.Extreme learning machine for regression and multiclass classification[J].Systems,Man,and Cybernetics,Part B:IEEE Transactions on Cybernetics,2012,42(2):513-529. [18]刘念,张清鑫,刘海涛.基于核函数极限学习机的微电网短期负荷预测方法[J].电工技术学报,2015,30(8):218-224. Liu Nian,Zhang Qingxin,Liu Haitao.Online short-term load forecasting based on ELM with kernel algorithm in micro-grid environment[J].Transactions of China Electrotechnical Society,2015,30(8):218-224. [19]席剑辉,韩敏.主成分分析与神经网络的结合在多变量序列预测中的应用[J].自动化学报,2007,24(5):719-724. Xi Jianhui,Han Min.Prediction of multivariate time series based on principal component analysis and neural networks[J].Acta Automatica Sinica,2007,24(5):719-724. [20]卢山,王海燕.多变量时间序列最大李雅普诺夫指数的计算[J].物理学报,2006,55(2):572-576. Lu Shan,Wang Haiyan.Calculation of the maximal Lyapunov exponent from multivariate data[J].Acta Physica Sinica,2006,55(2):572-576.