Soft Switching Technology for ICPT System under the Condition of Wide Temperature Range
Su Yugang1, 2, Wu Xueying2, Liu Bo2, Tang Chunsen2, Chen Long2
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400030 China;
2. College of Automation Chongqing University Chongqing 400030 China
For applications of wireless power transfer (WPT) technologies in the oil drilling rig, this paper proposes the changing laws of the main parameters of ICPT system with the variety of temperature through experimental analysis. The changing laws contribute to solving the problem of operating frequency deviation from the soft switching point caused by the parameters drift in the wide temperature range, and help to prevent inductive coupled power transfer (ICPT) system from transmission performance reduction and breakdown. The model of the main circuit is established based on the stroboscopic map modeling method and the cycle of the fixed point theory. Besides, the relationship between the resonance frequency of the system and the temperature is obtained, which provides evidences for the regulation of the driving frequency to achieve the soft switching control. In addition, a method combined with look-up table method and disturbance observation is proposed to ensure that the ICPT system can realize the soft switching control over the wide temperature range. Finally, simulations and experiments have verified the feasibility and effectiveness of the theory and scheme.
苏玉刚, 吴学颖, 刘波, 唐春森, 陈龙. 宽温度范围下感应耦合电能传输系统软开关技术[J]. 电工技术学报, 2017, 32(16): 175-182.
Su Yugang, Wu Xueying, Liu Bo, Tang Chunsen, Chen Long. Soft Switching Technology for ICPT System under the Condition of Wide Temperature Range. Transactions of China Electrotechnical Society, 2017, 32(16): 175-182.
[1] Hu A P, Boys J T, Govic G.A. Frequency analysis and computation of a current-fed resonant converter for ICPT power supplies[C]//IEEE International Con- ference on Power System Technology, Perth, WA, Australia, Australia, 2000: 327-332.
[2] Li H L, Hu A P, Covic G.A, et al. Optimal coupling condition of IPT system for achieving maximum power transfer[J]. Electronics Letters, 2009, 45(1): 76-77.
[3] Boys J T, Covic G A, Green A W. Stability and control of inductively coupled power transfer systems[J].IEEE Proceedings of Electric Power Applications, 2000, 147(1): 37-39.
[4] Su Yugang, Zhang Hongyan, Wang Zhihui, et al. Steady-state load identification method of inductive power transfer system based on switching capa- citors[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6349-6355.
[5] Huang Runhong, Zhang Bo, Qiu Dongyuan, et al. Frequency splitting phenomena of magnetic resonant coupling wireless power transfer[J]. IEEE Transa- ctions on Magnetics, 2014, 50(11): 1-4.
[6] Chen Q H, Wong S C, Tse C K, et al. Analysis, design, and control of a transcutaneous power regulator for artificial hearts[J]. IEEE Transactions on Biomedical Circuits and Systems, 2009, 3(1): 23-31.
[7] Su Yugang, Dai Xin, Wang Zhihui, et al. Study on an optimal control method for energy injection resonant AC/AC high frequency converters[J]. Journal of Power Electronics, 2013, 13(2): 197-205.
[8] 黄学良, 谭林林, 陈中, 等. 无线电能传输技术研究与应用综述[J]. 电工技术学报, 2013, 28(10): 1-11.
Huang Xueliang, Tan Linlin, Chen Zhong, et al. Review and research progress on wireless power transfer technology[J]. Transactions of China Electro- technical Society, 2013, 28(10): 1-11.
[9] Tang C S, Sun Y, Su Y G, et al. Determining multiple steady-state ZCS operating points of a switch-mode contactless power transfer system[J]. IEEE Transa- ctions on Power Electronics, 2009, 24(2): 416-425.
[10] 张献, 杨庆新, 张欣, 等. 新型电磁耦合谐振式无线电能传输系统建模与实验验证(英文)[J]. 电工技术学报, 2014, 29(2): 185-190.
Zhang Xian, Yang Qingxin, Zhang Xin, et al. Modeling and experimental verification for a novel wireless power transmission system via electro- magnetic resonant coupling[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 185-190.
[11] 程志远, 朱春波, 魏国, 等. 串-并补偿结构大功率感应充电系统谐振变换器[J]. 电工技术学报, 2014, 29(9): 44-48.
Cheng Zhiyuan, Zhu Chunbo, Wei Guo, et al. Resonant converter for high power ICPT system with series-parallel compensation[J]. Transactions of China Electrotechnical Society, 2014, 29(9): 44-48.
[12] 黄晓生, 陈为. 线圈高频损耗解析算法改进及在无线电能传输磁系统设计的应用[J]. 电工技术学报, 2015, 30(8): 62-70.
Huang Xiaosheng, Chen Wei. A novel compensation network for ICPT systems[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 62-70.
[13] Ahn D, Hong S. A study on magnetic field repeater in wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 360-371.
[14] Liu X, Hui S Y R. Optimal design of a hybrid winding structure for planar contactless battery charging platform[J]. IEEE Transactions on Power Electronics, 2008, 23(1): 455-463.
[15] Huang C Y, Boys J T, Covic G A. LCL pickup circulating current controller for inductive power transfer systems[J]. IEEE Transactions on Power Electronics, 2013, 28(4): 2081-2093.
[16] 苏玉刚, 谢诗云, 呼爱国, 等. LCL复合谐振型电场耦合式无线电能传输系统传输特性分析[J]. 电工技术学报, 2015, 30(19): 55-60.
Su Yugang, Xie Shiyun, Hu Aiguo, et al. Transmission property analysis of electric-field coupled wireless power transfer system with LCL resonant network[J]. Transactions of China Electro- technical Society, 2015, 30(19): 55-60.
[17] 封阿明. 基于全桥谐振变换器的非接触电能传输系统基本特性研究[D]. 南京: 南京航空航天大学, 2011.
[18] 刘福鑫, 陈悦, 胡高平, 等. 不对称控制方式三相三电平直流变换器[J]. 中国电机工程学报, 2014, 34(24): 4007-4014.
Liu Fuxin, Chen Yue, Hu Gaoping, et al. Three-phase three-level DC/DC converters with an asymmetrical control strategy[J]. Proceedings of the CSEE, 2014, 34(24): 4007-4014.
[19] 陈隆宇. 高增益直流变换器中的软开关设计研究[D]. 杭州: 浙江大学, 2013.
[20] 汪明添. 电子元器件和材料[M]. 北京: 北京理工大学出版社, 2010.
[21] 张常友, 刘蜀阳. 电子元器件检测与应用[M]. 北京: 电子工业出版社, 2009.
[22] Yamazaki T, Aono M. Mutual inductance of small solenoid coil equipped with scanning tunneling electron microscope[J]. Materials transactions, 2001, 42(8): 1705-1709.
[23] 唐春森. 非接触电能传输系统软开关工作点研究及应用[D]. 重庆: 重庆大学, 2009.