Equivalent Model of the Thyristor-Type Inter-Connector for Multi-Time Scale Transform
Zhang Chunpeng, Jiang Qirong, Zhao Zhengming
State Key Laboratory of Control and Simulation of Power System and Generation Equipments Department of Electrical Engineering Tsinghua University Beijing 100084 China
Abstract:Flexible interconnection of power grids draws more and more attention. The novel inter-connector based on thyristor-controlled zigzag transformer can be applied to the interconnection of synchronous power grids, closed-loop operation of distribution networks, flexibly opening electromagnetic loop, etc. The Thevenin equivalent model of its primary circuit with large time-scale is developed and the self-tuned interpolation algorithm is adopted, guaranteeing the simulation accuracy with relatively large simulating step. Simulation models based on devices and equivalent model are both developed for multi-timescale transform. The effectiveness of the flexible interconnector as well as correctness of the equivalent model is validated. Simulations are implemented by the steps of 50μs and 300μs, respectively, using the two kinds of models. It is demonstrated that the proposed equivalent model shows satisfied accuracy under both steps. The simulation time consumptions are around 14.5% and 10.3% of the device-based simulation model, approving a sharply decreased computation.
[1] Safdarian, Fotuhi-Firuzabad M, Lehtonen M. Benefits of demand response on operation of distribution networks: a case study[J]. IEEE Systems Journal, 2016, 10(1): 189-197. [2] 王成山, 宋关羽, 李鹏. 基于智能软开关的智能配电网柔性互联技术及展望[J]. 电力系统自动化, 2016, 40(22): 168-175. Wang Chengshan, Song Guanyu, Li Peng. Research and prospect for soft open point based flexible interconnection technology for smart distribution network[J]. Automation of Electric Power Systems, 2016, 40(22): 168-175. [3] 马钊, 安婷, 尚宇炜. 国内外配电前沿技术动态及发展[J]. 中国电机工程学报, 2016, 36(6): 1552- 1567. Ma Zhao, An Ting, Shang Yuwei. State of the art and development trends of power distribution techno- logies[J]. Proceedings of the CSEE, 2016, 36(6): 1552-1567. [4] 蒲天骄, 刘克文, 陈乃仕, 等. 基于主动配电网的城市能源互联网体系架构及其关键技术[J]. 中国电机工程学报, 2015, 35(14): 3511-3521. Pu Tianjiao, Liu Kewen, Chen Naishi, et al. Design of ADN based urban energy internet architecture and its technological issues[J]. Proceedings of the CSEE, 2015, 35(14): 3511-3521. [5] 韩永霞, 何秋萍, 赵宇明, 等. 采用柔性直流技术的智能配电网接入交流电网方式[J]. 电力系统自动化, 2016, 40(13): 141-146. Han Yongxia, He Qiuping, Zhao Yuming, et al. Access mode of intelligent distribution network to AC network based on flexible DC technology[J]. Automation of Electric Power Sytems, 2016, 40(13): 141-146. [6] 高凯, 阳岳希, 张艳军, 等. 适用于城市电网的柔性环网控制器拓扑方案研究[J]. 电网技术, 2016, 40(1): 78-85. Gao Kai, Yang Yuexi, Zhang Yanjun, et al. A topology research of flexible looped network controller suitable to urban power grid[J]. Power System Technology, 2016, 40(1): 78-85. [7] 杨文博, 宋强, 刘文华, 等. 降低模块化多电平换流器子模块电容值的控制方法[J]. 电力系统自动化, 2015, 39(16): 86-94. Yang Wenbo, Song Qiang, Liu Wenhua, et al. A control strategy for reducing submodule capacitance value of modular multilevel converter[J]. Automation of Electric Power Sytems, 2015, 39(16): 86-94. [8] Picas R, Ceballos S, Pou J, et al. Agelidis closed-loop discontinuous modulation technique for capacitor voltage ripples and switching losses reduction in modular multilevel converters[J]. IEEE Transactions on Power Electronics, 2015, 30(9): 4714-4725. [9] Merlin M M C, Green T C. Cell capacitor sizing in multilevel converters: cases of the modular multilevel converter and alternate arm converter[J]. IET Power Electronics, 2014, 8(3): 350-360. [10] Zhang Chunpeng, Jiang Qirong, Wei Yingdong, et al. A series voltage compensator based on thyristor- controlled transformer[C]//IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Brisbane, Queensland, Australia, 2015: 1-5. [11] Gnanarathna U N, Gole A M, Jayasinghe R P. Efficient modeling of modular multilevel HVDC converters (MMC) on electromagnetic transient simulation programs[J]. IEEE Transactions on Power Delivery, 2011, 26(1): 316-324. [12] Yu Feng, Lin Weixing, Wang Xitian, et al. Fast voltage-balancing control and fast numerical simulation model for the modular multilevel converter[J]. IEEE Transactions on Power Delivery, 2015, 30(1): 220- 228. [13] Li Wei, Jean Bélanger. An equivalent circuit method for modelling and simulation of modular multilevel converters in real-time HIL test bench[J]. IEEE Transactions on Power Delivery, 2016, 31(5): 2401- 2409. [14] 周飞, 于弘洋, 方万良, 等. 分级投切可控移相器稳态相量建模与分析[J]. 电网技术, 2013, 37(11): 3184-3189. Zhou Fei, Yu Hongyang, Fang Wanliang, et al. Steady state phasor modeling and analysis of hierarchically switched thyristor controlled phase shift transformer[J]. Power System Technology, 2013, 37(11): 3184-3189. [15] 申旭辉, 印永华, 卜广全, 等. 双输出移相器的建模研究[J]. 电网技术, 2012, 36(5): 215-218. Shen Xuhui, Yin Yonghua, Bu Guangquan, et al. Research on modeling of dual output phase-shifting transformers[J]. Power System Technology, 2012, 36(5): 215-218. [16] 郑彬, 项祖涛, 班连庚, 等. 特高压静止移相器应用的电磁暂态仿真分析[J]. 电网技术, 2013, 37(5): 1372-1377. Zheng Bin, Xiang Zutao, Ban Liangeng, et al. Electromagnetic transient analysis on static phase shifter applied in UHV power grid[J]. Power System Technology, 2013, 37(5): 1372-1377. [17] 张曼. 统一潮流控制器多目标协调控制策略及拓扑研究[D]. 北京: 清华大学, 2014. [18] 舒德兀, 张春朋, 姜齐荣, 等. 电力电子仿真中开关时刻自校正插值算法[J]. 电网技术, 2016, 40(5): 1455-1461. Shu Dewu, Zhang Chunpeng, Jiang Qirong, et al. A switching point self-correction interpolation algorithm for power electronic simulations[J]. Power System Technology, 2016, 40(5): 1455-1461. 19 (编辑 陈 诚)