Abstract:The existing SVPWM (space vector pulse width modulation) overmodulation algorithm is complex and involves division operation. Hence, a new type of splitting variable modulation waveform was developed. The modulation waveform is a sinusoidal wave in the linear range of modulation index M∈[0, 1], while in the M∈(1, 4/π) overmodulation range, the sine wave is split into two sinusoidal curves that can be changed independently. The two splitting curves are connected to form a new modulation waveform. The area of the new modulation waveform further expends with the increase of M until approaching the square waveform. In the linear range, through a triangle carrier waveform sampling, changing the modulating waveform height linearly changes PWM fundamental amplitude. In the overmodulation range, reducing the splitting angle further increases the fundamental amplitude till approaching a square waveform. The optimal splitting angle’s initial value can be obtained by studying the relationship between the harmonics of PWM in overmodulation range and the initial value of splitting angle. The new PWM algorithm is simple. Compared to SPWM, its total harmonic current distortion THD is identical in the linear range; and it is still continuously lower at M∈(1, 1.2] overmodulation range. The experimental results had been confirmed the validity and superiority of the new technique.
王榕生. 分裂式可变调制波的PWM过调制技术及谐波分析[J]. 电工技术学报, 2017, 32(10): 206-213.
Wang Rongsheng. A Novel PWM Overmodulation Technique Based on the Splitting Variable Modulating Waveform and Harmonic Influence Analysis. Transactions of China Electrotechnical Society, 2017, 32(10): 206-213.
[1] 吴瑕杰, 宋文胜, 冯晓云.一种在线计算多模式空间矢量调制算法及其FPGA实现[J]. 电工技术学报, 2016, 31(18): 124-133. Wu Xiajie, Song Wensheng, Feng Xiaoyun. An on-line calculation multi-mode SVPWM algorithm and implementation based on FPGA[J]. Transactions of China Electrotechnical Society, 2016, 31(18): 124-133. [2] 蔡纪鹤, 李蓓, 张永春.基于SVPWM的光伏无功控制研究[J]. 电工技术学报, 2016, 31(24): 233-239. Cai Jihe, Li Bei, Zhang Yongchun. Research on photovoltaic reactive power control based on SVPWM[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 233-239. [3] 卢远宏, 郑琼林, 马亮. 基于空间直角坐标系的逆变器调制波研究[J]. 电工技术学报, 2015, 30(4): 187-195. Lu Yuanhong, Zheng Trillion Q, Ma Liang. Research on modulation wave of inverter based on space rectangular coordinate system[J].Transactions of China Electrotechnical Society, 2015, 30(4): 187-195. [4] 贺昱曜, 张柳明扬, 陈金平. 抑制Z-源逆变器母线电压跌落的空间矢量脉宽调制方法[J]. 电工技术学报, 2017, 32(2): 228-237. He Yuyao, Zhang Liumingyang, Chen Jinping. Voltage drop suppression of Z-source inverter using space vector PWM method[J].Transactions of China Electrotechnical Society, 2017, 32(2): 228-237. [5] 赵辉, 胡仁杰. SVPWM的基本原理与应用仿真[J]. 电工技术学报, 2015, 30(14): 350-353. Zhao Hui, Hu Renjie. Space-vector pulse width modulation and it’s simulation based on simulink[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 350-353. [6] 周长攀, 苏健勇, 杨贵杰. 双三相永磁同步电机全调制比范围空间矢量脉宽调制[J]. 电工技术学报, 2015, 30(10): 90-100. Zhou Changpan, Su Jianyong, Yang Guijie. The SVPWM strategy in full modulation region for dual three-phase PMSM[J]. Transactions of China Electro- technical Society, 2015, 30(10): 90-100. [7] 刘云峰, 何英杰, 王超, 等. 级联H桥多电平逆变器空间矢量调制与三角载波调制统一理论[J]. 电工技术学报, 2016, 31(16): 114-123. Liu Yunfeng, He Yingjie, Wang Chao, et al. The unity theory between space vector and triangular carrier PWM modulation strategy in cascaded H bridge multilevel inverter[J]. Transactions of China Electrotechnical Society, 2016, 31(16): 114-123. [8] 方辉, 冯晓云, 葛新来, 等. 过调制区内两电平SVPWM与CBPWM算法的内在联系研究[J]. 中国电机工程学报, 2012, 32(18): 23-29. Fang Hui, Feng Xiaoyun, Ge Xinlai, et al. Relationship studies between two-level SVPWM and CBPWM in the over-modulation region[J]. Pro- ceedings of the CSEE, 2012, 32(18): 23-29. [9] 陆海峰, 瞿文龙, 张磊, 等. 基于调制函数的SVPWM算法[J]. 电工技术学报, 2008, 23(2): 37-43. Lu Haifeng, Qu Wenlong, Zhang Lei, et al. SVPWM algorithm based on modulation functions[J]. Transa- ctions of China Electrotechnical Society, 2008, 23(2): 37-43. [10] 吴芳, 万山明, 黄声华. 一种过调制算法及其在永磁同步电动机弱磁控制中的应用[J]. 电工技术学报, 2010, 25(1): 58-63. Wu Fang, Wan Shanming, Huang Shenghua. An over-modulation algorithm and its application in PMSM drive with flux-weakening control[J]. Transa- ctions of China Electrotechnical Society, 2010, 25(1): 58-63. [11] 吴德会, 夏晓昊, 张忠远, 等.基于三相桥臂坐标的SVPWM过调制方法[J].电工技术学报, 2015, 30(1): 150-158. Wu Dehui, Xia Xiaohao, Zhang Zhongyuan, et al. A SVPWM overmodulation method based on three- phase bridge arm coordinates[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 150- 158. [12] Abdul Rahiman Beig. Synchronized SVPWM algorithm for the overmodulation region of a low switching frequency medium-voltage three-level VSI[J]. IEEE Transactions on Industrial Electronics, 2012, 59(12): 4545-4554. [13] 樊扬, 瞿文龙, 陆海峰, 等. 基于叠加原理的SVPWM过调制算法[J]. 清华大学学报: 自然科学版, 2008, 48(4): 461-464. Fan Yang, Qu Wenlong, Lu Haifeng, et al. SVPWM over-modulation algorithm based on superposition principle[J]. Journal of Tshinghua University: Science and Technology, 2008, 48(4): 461-464. [14] 马志文, 郑琼林, 林飞. 具有全调制范围的空间矢量脉宽调制算法研究[J]. 北京交通大学学报, 2007, 31(2): 89-93. Ma Zhiwen, Zheng Qionglin, Lin Fei. Study of space vector PWM algorithm with entire modulation range[J]. Journal of Beijing Jiaotong University, 2007, 31(2): 89-93. [15] 王旭东, 张思艳, 欲腾伟. SVPWM过调制中控制角算法的分析与应用[J]. 电机与控制学报, 2010, 14(12): 63-67. Wang Xudong, Zhang Siyan, Yu Tengwei. Control angle algorithm of SVPWM over modulation analysis and application[J]. Electric Machines and Control, 2010, 14(12): 63-67. [16] 王榕生. 优化的准正弦平顶调制波PWM过调制新技术[J]. 电机与控制学报, 2014, 18(6): 9-14. Wang Rongsheng. A novel PWM overmodulation technique with the optimal flat top quasi-sinusoidal modulating wave[J]. Electric Machines and Control, 2014, 18(6): 9-14. [17] Bowes S R, Holliday D. Comparison of pulse- width-modulation control strategies for three-phase inverter systems[J]. IEE Proceedings-Electric Power Applications, 2006, 153(4): 575-584. [18] Bowes S R, Holliday D. Optimal regular-sampled PWM inverter control techniques[J]. IEEE Transa- ctions on Industrial Electronics, 2007, 54(3): 1547- 1559. [19] Shi K L, Li H. Optimized PWM strategy based on genetic algorithm[J]. IEEE Transactions on Industrial Electronics, 2005, 52(5): 1458-1461. [20] 王榕生, 吴汉光. 消谐法SHEPWM的谐波影响数值分析[J]. 电工技术学报, 2011, 26(9): 183-189. Wang Rongsheng, Wu Hanguang. Numerical analysis of harmonic influence for selected harmonic elimination PWM[J]. Transactions of China Elec- trotechnical Society, 2011, 26(9): 183-189.