Abstract:In the process of inductive power transfer (IPT), the secondary impedance changes due to changing operation conditions or other environmental factors, which also causes the change of equivalent impedance in the primary side. This leads to the deviation of resonance and soft-switching condition and requires higher capacity of the power supplyin the primary side. To solve the problem, aminimum voltage tracking based receiver's resonant frequency tracking technique is employed in the IPT system. This approach adopts real-time detection of the DC-DC output voltage and the operating frequency of the inverter to restore resonance of the primary circuit by constantly tracking the minimum DC-DC output voltage. The experimental result shows the validity of the proposed approach. It has been shown that the proposed approach lowers system capacity and helps to achieve soft-switching conditionin the primary side.
马晓晴, 麦瑞坤, 陆立文, 李勇. 一种最小电压跟踪的感应电能传输系统调频调谐方法[J]. 电工技术学报, 2016, 31(增刊): 32-38.
Ma Xiaoqing, Mai Ruikun, Lu Liwen, Li Yong. A Minimum Voltage Tracking Based Receiver's Resonant Frequency Tracking Technique for Inductive Power Transfer Systems. Transactions of China Electrotechnical Society, 2016, 31(增刊): 32-38.
[1] 李阳, 杨庆新, 闫卓, 等. 无线电能有效传输距离及其影响因素分析[J]. 电工技术学报, 2013, 28(1): 106-112. Li Yang, Yang Qingxin, Yan Zhuo, et al. Analysis on effective range of wireless power transfer and its impact factors[J]. Transactions of China Electrotechnical Society, 2013, 28(1): 106-112. [2] 麦瑞坤, 陆立文, 李勇, 等. 一种采用最小电压与最大电流跟踪的IPT系统动态调谐方法[J]. 电工技术学报, 2015, 30(19): 32-38. Mai Ruikun, Lu Liwen, Li Yong, et al. Dynamic resonant compensation approach based on minimum voltage and maximum current tracking for IPT system [J]. Transactions of China Electrotechnical Society, 2015, 30(19): 32-38. [3] Chopra S, Bauer P. On-road contactless power transfer- case study for driving range extension of EV[J]. IEEE Transactions on Industrial Electronics, 2011, 60(5): 4596-4602. [4] 李勇, 麦瑞坤, 马林森, 等. 一种双初级线圈并绕的感应电能传输系统及其功率分配方法[J]. 中国电机工程学报, 2015, 35(17): 4454-4460. Li Yong, Mai Ruikun, Ma Linsen, et al. Dual parallel wound primary coils based IPT systems and its power allocation technique[J]. Proceedings of the CSEE, 2015, 35(17): 4454-4460. [5] 马林森, 李砚玲, 麦瑞坤, 等. 新型感应式电能传输系统高效拾取机构的仿真设计[J]. 电工技术学报, 2015, 30(增1): 496-500. Ma Linsen, Li Yanling, Mai Ruikun, et al. Simulation design of an efficient new type pick-up structure in inductive power transfer system[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 496-500. [6] Covic G A, Boys J T. Modern trends in inductive power transfer for transportation applications[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2013(1): 28-41. [7] Jin Huh, Lee Sungwoo, Park Changbyung, et al. High performance inductive power transfer system with narrow rail width for on-line electric vehicles[C]// IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, 2010: 647-651. [8] Budhia M, Boys T J, Covic A G, et al. Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 318-328. [9] Lin J C. Space solar-power stations, wireless power transmissions, and biological implications[J]. IEEE Microwave Magazine, 2002, 3(1): 36-42. [10] Zhang Yiming, Zhao Zhengming, Yuan Liqiang, et al. Comparison of two basic structures in magnetically- coupled resonant wireless power transfer[J]. Transac- tions of China Electrotechnical Society, 2013, 28(S2): 18-22. [11] Boys John, Covic Grant, Hu Patrick, et al. AC proce- ssing controllers for IPT systems[M]. Rijeka: InTech, 2012. [12] Keeling Nicholas A, Covic Grant A, Boys John T. A unity-power-factor IPT pickup for high-power applica- tions[J]. IEEE Transactions on Industrial Electronics, 2010, 57(2): 744-751. [13] 何正友, 李勇, 麦瑞坤, 等. 考虑阻感性负载IPT系统的动态补偿技术[J]. 西南交通大学学报, 2014, 49(4): 569-575. He Zhengyou, Li Yong, Mai Ruikun, et al. Dynamic compensation strategy of inductive power transfer system with inductive-resistive load[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 569-575. [14] 李思海. 一种非对称式软开关逆变器的研究[D]. 济南: 山东大学, 2005. [15] 朱志明, 杨中宇, 汤莹莹, 等. 软开关逆变器谐振过程解耦分析与参数设计[J]. 焊接学报, 2015, 36(3): 5-13. Zhu Zhiming, Yang Zhongyu, Tang Yingying, et al. Decoupling analysis and parameter design of resonant process of soft switching inverter[J]. Transactions of the China Welding Institution, 2015, 36(3): 5-13. [16] 刘静章, 王进旗, 王凤波. 过零检测技术在相位测量中应用[J]. 电子测量技术, 2004(5): 67-68. Liu Jingzhang, Wang Jinqi, Wang Fengbo. Application of past zero detection in phase measurement[J]. Electronic Measurement Technology, 2004(5): 67-68. [17] 朱洪, 相敬林. 信号过零检测及其在引信技术中的应用[J]. 声学学报, 1995, 20(3): 218-220. Zhu Hong, Xiang Jinglin. Signal zaro-crossing detection with its application on fuse technique[J]. Acta Acustica, 1995, 20(3): 218-220. [18] 郑金菊, 余水宝. 相位实时检测技术研究[J]. 电测与仪表, 2003, 40(12): 29-32. Zheng Jinju, Yu Shuibao. Research of real-time detection technology of phase[J]. Electrical Measure- ment & Instrumentation, 2003, 40(12): 29-32. [19] Nedeljkovic D, Ambrozic V, Nastran J, et al. Synch- ronization to the network without voltage zero-cross detection[C]//Electrotechnical Conference, Mediter- ranean, 1998: 1228-1232. [20] Kosaka T, Tanahashi F, Matsui N, et al. Current zero cross detection-based position sensorless control of synchronous reluctance motors[C]//37th IAS Annual Meeting on Industy Applications Conference, 2002: 1610-1616.