Abstract:Magnetoacoustic tomography with magnetic induction (MAT-MI) is a new type of multi-physical, functional imaging modality, which combines the electrical impedance tomography with the sonography. Due to the complex structure, the MAT-MI imaging problems based on real model is of scientific and clinical significance. Wherein, the forward solver is the foundation of MAT-MI imaging. This paper addressed the problem for the modeling and forward solution of MAT-MI. The principle of coupling problem in MAT-MI was analyzed, and the real model of breast was reconstructed. Using generalized finite element method (GFEM), the forward problems of electromagnetic field and acoustic field were solved based on the real model of breast. The distributions of the acoustic source and acoustic pressure were obtained. The results show that in the real model, the distributions of the eddy current density and the acoustic source, as well as the profile of the acoustic pressure, changed remarkably, compared with the ideal two-layer concentric spheres model. It is suggested that the effects of the real model should be taken into account for image reconstruction in clinical application. Thanks to the high accuracy, the calculation method in this paper is applicable to solve the forward problem of MAT-MI.
张帅, 侯琬姣, 张雪莹, 杨红双, 徐桂芝. 基于真实乳腺模型的感应式磁声成像正问题[J]. 电工技术学报, 2016, 31(24): 126-133.
Zhang Shuai, Hou Wanjiao, Zhang Xueying, Yang Hongshuang, Xu Guizhi. Forward Problem in Magnetoacoustic Tomography with Magnetic Induction Based on Real Model of Breast. Transactions of China Electrotechnical Society, 2016, 31(24): 126-133.
[1] 刘砚青. 中国乳腺癌发病率高增之谜[J]. 抗癌之窗, 2015(5): 15-17. Liu Yanqing. The mystery of the high incidence of breast cancer in China[J]. Cancer Frontier, 2015(5): 15-17. [2] Zou Y, Guo Z. A review of electrical impedance techniques for breast cancer detection[J]. Medical Engineering & Physics, 2003, 25(2): 79-90. [3] 夏慧, 刘国强, 黄欣, 等. 基于互易定理的二维磁声电成像系统[J]. 电工技术学报, 2013, 28(7): 163-168. Xia Hui, Liu Guoqiang, Huang Xin, et al. 2D magneto-acousto-electrical tomography system based on reciprocity theorem[J]. Transactions of China Electrotechnical Society, 2013, 28(7): 163-168. [4] Roth B J, Basser P J. A theoretical model for magneto-acoustic imaging of bioelectric currents[J]. IEEE Transactionson Biomedical Engineering, 1994, 41(8): 723-728. [5] Xu Yuan, He Bin. Magnetoacoustic tomography with magnetic induction (MAT-MI)[J]. Physics in Medi- cine and Biology, 2005, 50(1): 5175-5187. [6] Li Xu, Xu Yuan, He Bin. Imaging electrical impedance from acoustic measurements by means of magnetoacoustic tomography with magnetic indu- ction(MAT-MI)[J]. Transactions on Biomedical Engin- eering, 2007, 54(2): 323-330. [7] Ma Qingyu, He Bin. Investigation on magnetoa- coustic signal generation with magnetic induction and its application to electrical conductivity recon- struction[J]. Physics in Medicine and Biology, 2007, 52(16): 5085-5099. [8] Xia Rongmin, Li Xu, He Bin. Magnetoacoustic tomographic imaging of electrical impedance with magnetic induction[J]. Applied Physics Letters, 2007, 91, 083903. [9] Mariappan L, He B. Magnetoacoustic tomo- graphy with magnetic induction: bioimepedance reconstru- ction through vector source imaging[J]. IEEE Transa- ctions on Medical Imaging, 2013, 32(3): 619-627. [10] 贺文静, 刘国强, 张洋, 等. 感应式磁声成像声场正问题研究(一)——基于声压-速度耦合方程的声场模拟方法[J]. 现代科学仪器, 2010, 2(1): 9-13. He Wenjing, Liu Guoqiang, Zhang Yang, et al. Research on forward problem of magnetoacoustic tomography with magnetic induction (I)—sound field simulation method based on pressure-velocity coupling equation[J]. Modern Scientific Instruments, 2010, 2(1): 9-13. [11] 黄欣, 刘国强, 夏慧, 等. 感应式磁声成像的脉冲磁场研究[J]. 电工技术学报, 2013, 28(2): 67-72. Huang Xin, Liu Guoqiang, Xia Hui, et al. Study of pulsed magnetic field used in magnetioacoustic tomography with magnetic induction[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 67-72. [12] Guo Liang, Liu Guoqiang, Xia Hui, at al. Magneto- acousto-electrical tomography with magnetic indu- ction for conductivity reconstruction[J]. IEEE Transactions on Biomedical Engineering, 2014, 62(9): 2114-2124. [13] 黎里, 殷涛, 张顺起, 等. 基于ANSYS的磁声耦合效应声源的分布建模与仿真[J]. 生物医学工程研究, 2011, 30(1): 1-5. Li Li, Yin Tao, Zhang Shunqi, et al. Modeling and simulating study on the distribution of acoustic source inducted by magneto-acoustic coupling effect via ANSYS[J]. Journal of Biomedical Engineering Rescarch, 2011, 30(1): 1-5. [14] 马任, 殷涛, 张顺起, 等. 基于声换能器特性的磁感应磁声成像正问题分析[J]. 生物医学工程与临床, 2012, 16(3): 1-5. Ma Ren, Yin Tao, Zhang Shunqi, et al. Forward problem of magnetoacoustic tomography with magnetic induction based on the characteristics of acoustic transducer[J]. Biomedical Engineering and Clinic Medicine, 2012, 16(3): 1-5. [15] 李珣, Li Xu, 朱善安, 等. 基于时间反演方法的三维磁感应磁声成像电导率重建[J]. 中国生物医学工程学报, 2009, 28(1): 48-52. Li Xun, Li Xu, Zhu Shan’an, et al. 3D conductivity reconstruction of magnetoacoustic tomography with magnetic induction based on time reversal method[J]. Chinese Journal of Biomedical Engineering, 2009, 28(1): 48-52. [16] Zhou Lian, Zhu Shan’an, He Bin. A reconstruction algorithm of magnetoacoustic tomography with magnetic induction for acoustically inhomogeneous tissue[J]. IEEE Transactions on Biomedical Engin- eering, 2014, 61(6): 1739-1746. [17] 周廉, 朱善安, 贺斌. 三维磁感应磁声成像的新算法研究[J]. 电子学报, 2013, 41(2): 288-294. Zhou Lian, Zhu Shan’an, He Bin. A three- dimensional bioimpedance imaging algorithm by means of magnetoacoustic tomography with magnetic induction[J]. ACTA Electronica Sinica, 2013, 41(2): 288-294. [18] 李宜令, 马青玉. 基于磁感应磁声成像的洛伦兹力重建研究[J]. 声学技术, 2010, 29(6): 38-39. Li Yilin, Ma Qingyu. Lorentz force image reconstru- ction for MAT-MI[J]. Technical Acoustics, 2010, 29(6): 38-39. [19] 郭余庆, 李宜令, 马青玉, 等. 基于声偶极辐射的磁感应磁声层析成像研究[J]. 声学学报, 2011, 36(2): 185-190. Guo Yuqing, Li Yiling, Ma Qingyu, et al. Investigation of magnetoacoustic tomography with magnetic induction based on acoustic dipole radiation[J]. Acta Acustica, 2011, 36(2): 185-190. [20] Zhang Shuai, Zhang Xueying, Wang Hongbin, et al. Forward solver in magnetoacoustic tomography with magnetic induction by generalized finite element method[J]. IEEE Transactions on Magnetics, 2016, 52(3): 2480877. [21] 张明锐, 陈洁, 王之馨, 等. 一种新型的永磁同步风力发电机并网系统[J]. 电力系统保护与控制, 2013, 41(14): 141-148. Zhang Mingrui, Chen Jie, Wang Zhixin, et al. A new permanent magnet synchronous wind-power genera- tion grid-connected system[J]. Power System Pro- tection and Control, 2013, 41(14): 141-148. [22] 李立毅, 于吉坤, 曹继伟, 等. 新型定子结构永磁同步电机弱磁调速性能分析[J]. 电工技术学报, 2015, 30(14): 86-93. Li Liyi, Yu Jikun, Cao Jiwei, et al. Analysis of permanent magnet synchronous motor with new stator design for adjustable-speed by flux weakening[J]. Transactions of China Electrotechnical Sosiety, 2015, 30(14): 86-93. [23] 张献, 章鹏程, 杨庆新, 等. 基于有限元方法的电动汽车无线充电耦合机构的磁屏蔽设计与分析[J]. 电工技术学报, 2016, 31(1): 71-79. Zhang Xian, Zhang Pengcheng, Yang Qingxin, et al. Magnetic shielding design and analysis for wireless charging coupler of electric vehicles based on finite element method[J]. Transactions of China Electro- technical Society, 2016, 31(1): 71-79. [24] 刘阳, 刘俊勇, 张思明, 等. 考虑动态风电模型极限诱导分岔研究[J]. 电力系统保护与控制, 2011, 39(18): 116-154. Liu Yang, Liu Junyong, Zhang Siming, et al. The research of limit induced bifurcation in dynamic model of wind power system[J]. Power System Protection and Control, 2011, 39(18): 116-154. [25] 刘赟, 俞集辉, 程鹏. 基于电磁-热耦合场的架空输电线路载流量分析与计算[J]. 电力系统保护与控制, 2015, 43(9): 28-34. Liu Yun, Yu Jihui, Cheng Peng. Analysis and calculation on the ampacity of overhead transmission lines based on electromagnetic-thermal coupling fields[J]. Power System Protection and Control, 2015, 43(9): 28-34. [26] 韩雪岩, 陈全文, 陈萍轨. 道交通用永磁同步牵引电机电抗参数的有限元分析[J]. 电气技术, 2013, 14(3): 1-4. Han Xueyan, Chen Quanwen, Chen Pinggui. The finite element analysis of permanent magnet synch- ronous traction motor reactance parameters[J]. Electrical Technique, 2013, 14(3): 1-4. [27] 蔡智超, 刘素贞, 张闯, 等. 永磁扰动检测有限元分析及优化设计[J]. 电工技术学报, 2015, 30(3): 67-72. Cai Zhichao, Liu Suzhen, Zhang Chuang, et al. Finite element analysis and optimum design of permanent magnetic field perturbation testing[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 67-72.