Review on the Characteristic of New Cellulose Insulation Paper Used in the Converter Transformer
Liao Ruijin1, Wang Jiyu1, Yuan Yuan1, Gao Fei2, Li Jian1
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. China Electric Power Research Institute Beijing 100192 China
Abstract:Converter transformer is one of the most critical and strategic components in HVDC transmission, and its insulation system of the valve-side winding generally has high failure rate because of complex operation conditions. Although the traditional methods can improve the equipment reliability through on-line monitoring and fault diagnosis techniques, yet it is hard to guarantee the efficiency and economy when the maintenance cost and power transmission loss cost during the outages are taken into account. As the major insulation system in the valve-side winding, oil-paper insulation plays a vital role in the reliability and safety of converter transformer. Wherein, the insulation paper of the insulation system is not only deteriorated by the long-term impact of thermal stress, but also subjected to complex operating conditions such as AC-DC hybrid voltage and polarity reversal. Besides, the insulation paper is considered to be irreversible after degradation. Therefore, it is essential to improve the performance of insulation paper. This paper overviews the overseas and domestic research status combined with the studies of our group, aiming at improving the anti-thermal aging performance, breakdown performance and space charge characteristics of cellulose insulation paper. All the mentioned methods will be analyzed in this paper, and a new cellulose insulation paper used in the converter transformer is investigated.
廖瑞金, 王季宇, 袁媛, 高飞, 李剑. 换流变压器下新型纤维素绝缘纸特性综述[J]. 电工技术学报, 2016, 31(10): 1-15.
Liao Ruijin, Wang Jiyu, Yuan Yuan, Gao Fei, Li Jian. Review on the Characteristic of New Cellulose Insulation Paper Used in the Converter Transformer. Transactions of China Electrotechnical Society, 2016, 31(10): 1-15.
[1] 黄道春, 魏远航, 钟连宏, 等. 我国发展特高压直流输电中一些问题的探讨[J]. 电网技术, 2007, 31(8): 6-12. Huang Daochun, Wei Yuanhang, Zhong Lianhong, et al. Discussion on several problems of developing UHVDC transmission in China[J]. Power System Technology, 2007, 31(8): 6-12. [2] 刘振亚, 张启平. 国家电网发展模式研究[J]. 中国电机工程学报, 2013, 33(7): 1-10. Liu Zhenya, Zhang Qiping. Study on the development mode of national power grid of China[J]. Proceedings of the CSEE, 2013, 33(7): 1-10. [3] 梁旭明, 张平, 常勇. 高压直流输电技术现状及发展前景[J]. 电网技术, 2012, 36(4): 1-9. Liang Xuming, Zhang Ping, Chang Yong. Recent advances in high-voltage direct-current power transmission and its developing potential[J]. Power System Technology, 2012, 36(4): 1-9. [4] 王永红. 换流变压器油纸绝缘击穿特性[D]. 哈尔滨: 哈尔滨理工大学, 2013. [5] 刘刚. 换流变压器交直流复合电场和极性反转电场算法研究[D]. 北京: 华北电力大学, 2012. [6] 廖瑞金, 杨丽君, 郑含博, 等. 电力变压器油纸绝缘热老化研究综述[J]. 电工技术学报, 2012, 27(5): 1-12. Liao Ruijin, Yang Lijun, Zheng Hanbo, et al. Reviews on oil-paper insulation thermal aging in power transformers[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 1-12. [7] Kohman G T. Cellulose as an insulating material[J]. Ind. Eng. Chem., 1939, 31(7): 807-817. [8] De Pablo A, Pahlavanpour B. Furanic compounds analysis: a tool for predictive maintenance of oil- filled electrical equipment[J]. Electra, 1997, 175(7): 9-31. [9] Emsley A, Xiao X, Heywood R, et al. Degradation of cellulosic insulation in power transformers. Part 3: effects of oxygen and water on ageing in oil[J]. IEEE Proceedings of Science, Measurement and Tech- nology, 2000, 147(3): 115-119. [10] 王树森. 变压器绝缘材料(6)[J]. 变压器, 2003, 40(4): 42-46. Wang Shusen. Transformer insulating materials (Part Ⅵ)[J]. Transformer, 2003, 40(4): 42-46. [11] Lundgaard L E, Hansen W, Linhjell D, et al. Aging of oil-impregnated paper in power transformers[J]. IEEE Transactions on Power Delivery, 2004, 19(1): 230-239. [12] Pablo A D, Pahlavanpour B. Furanic compounds analysis: a tool for predictive maintenance of oil- filled electrical equipment[J]. Electra, 1997, 175(32): 9-31. [13] 秦特夫, 阎昊鹏. 木材表面非极性化原理的研究: Ⅲ. 各化学组分在乙酰化过程中酯化能力的差异[J]. 木材工业, 2000, 14(4): 13-15. Qin Tefu, Yan Haopeng. Study on mechanism of wood surface non-polarization. Part Ⅲ: the differ- ence of esterification ability of wood main com- posites[J]. China Wood Industry, 2000, 14(4): 13-15. [14] Bernstein B S, Marks J. Transformer insulation[J]. IEEE Electrical Insulation Magazine, 1986, 2(2): 52-56. [15] 孙优良, 王清璞, 李文平, 等. ±800kV直流输电工程用换流变压器的研发[J]. 电力设备, 2006, 7(11): 17-20. Sun Youliang, Wang Qingpu, Li Wenping, et al. R&D of converter transformer for ±800kV HVDC power transmission project[J]. Electrical Equipment, 2006, 7(11): 17-20. [16] 李文平, 陈志伟, 宋秀生, 等. ±800kV直流输电工程用换流变压器主绝缘结构的研究[J]. 电力设备, 2007, 8(3): 5-7. Li Wenping, Chen Zhiwei, Song Xiusheng, et al. Study on main insulation system of converter transformer for ±800kV HVDC power transmission project[J]. Electrical Equipment, 2007, 8(3): 5-7. [17] 罗青林. 关于800kV换流变压器主绝缘研究[J]. 变压器, 2009, 46(11): 7-9. Luo Qinglin. Main insulation research of 800kV converter transformer[J]. Transformer, 2009, 46(11): 7-9. [18] Emsley A M, Stevens G C. Review of chemical indicators of degradation of cellulosic electrical paper insulation in oil-filled transformers[J]. IEE Proceedings of Science, Measurement and Tech- nology, 1994, 141(5): 324-334. [19] Oommen T V, Prevost T A. Cellulose insulation in oil-filled power transformers. Part II: maintaining insulation integrity and life[J]. IEEE Electrical Insulation Magazine, 2002, 22(2): 5-14. [20] 廖瑞金, 冯运, 杨丽君, 等. 油纸绝缘老化特征产物生成速率研究[J]. 中国电机工程学报, 2008, 28(10): 142-147. Liao Ruijin, Feng Yun, Yang Lijun, et al. Study on generation rate of characteristic products of oil-paper insulation aging[J]. Proceedings of the CSEE, 2008, 28(10): 142-147. [21] Emsley A M, Stevens G C. Kinetics and mechanisms of the low-temperature degradation of cellulose[J]. Cellulose, 1994, 1(1): 26-56. [22] 杨淑蕙. 植物纤维化学[M]. 北京: 中国轻工业出版社, 2001. [23] 张福州. 抗热老化和高击穿强度的纤维素绝缘纸制备及其性能研究[D]. 重庆: 重庆大学, 2012. [24] Ekenstam A. The behaviour of cellulose in mineral acid solutions: kinetic study of the decomposition of cellulose in acid solutions[J]. Ber, 1936, 69: 540-553. [25] Emsley A M. The kinetics and mechanisms of degradation of cellulosic insulation in power trans- formers[J]. Polymer Degradation and Stability, 1994, 44(3): 343-349. [26] Zou X, Uesaka T, Gurnagul N. Prediction of paper permanence by accelerated aging I. Kinetic analysis of the aging process[J]. Cellulose, 1996, 3(1): 243-267. [27] Prevost T A. Thermally upgraded insulation in transformers[C]//IEEE Proceedings Electrical Insu- lation Conference and Electrical Manufacturing Expo, Indianapolis, 2005: 120-125. [28] Belén García, Juan Carlos Burgos, ángel Alonso, et al. A moisture-in-oil model for power transformer monitoring—part I: theoretical foundation[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1417- 1422. [29] Du Y, Zahn M, Lesieutm B C, et al. Moisture equilibrium in transformer paper-oil systems[J]. IEEE Electrical Insulation Magazine, 1999, 15(1): 11-20. [30] 杨丽君, 齐超亮, 郝建, 等. 变压器油纸绝缘水分含量的频域介电特征参量及评估方法研究[J]. 电工技术学报, 2013, 28(10): 59-66. Yang Lijun, Qi Chaoliang, Hao Jian, et al. Frequency-domain dielectric characteristic parameter and moisture content assessment methods study on frequency-domain dielectric spectroscopy of oil- paper insulation for transformers[J]. Transactions of China Elctrotechnical Society, 2013, 28(10): 59-66. [31] 杨丽君, 廖瑞金, 孙才新, 等. 植物油对油浸绝缘纸老化速率的影响及机理[J]. 电工技术学报, 2012, 27(5): 26-33. Yang Lijun, Liao Ruijin, Sun Caixin, et al. Influence of vegetable oil on the thermal aging rate of kraft paper and its mechanism[J]. Transactions of China Elctrotechnical Society, 2012, 27(5): 26-33. [32] 廖瑞金, 梁帅伟, 周天春, 等. 天然酯-纸绝缘热老化速度减缓及其原因分析[J]. 电工技术学报, 2008, 23(9): 32-37. Liao Ruijin, Liang Shuaiwei, Zhou Tianchun, et al. Comparison for the mineral oil-paper and the nature ester-paper insulation degradation and cause analysis[J]. Transactions of China Elctrotechnical Society, 2008, 23(9): 32-37. [33] Nishino T, Matsuda I, Hirao K. All-cellulose com- posite[J]. Macromolecules, 2004, 37(20): 7683-7687. [34] 廖瑞金, 吴伟强, 聂仕军, 等. 复合热稳定剂对绝缘纸协同抗老化效应的分子模拟研究[J]. 电工技术学报, 2015, 30(10): 330-337. Liao Ruijin, Wu Weiqiang, Nie Shijun, et al. Study on the synergistic anti-aging effect of composite thermal stabilizers on the insulation paper by molecular modeling[J]. Transactions of China Elctrotechnical Society, 2015, 30(10): 330-337. [35] Prevost T A, Nordman H, Oommen T. Transformer insulation upgrading and loading guide equations[C]// Panel Session IEEE Transactions Former Committee Insulation Life Subcommittee, 2005. [36] 姚洁,魏晓魏. 绝缘纸耐高温老化助剂的制备及应用[J]. 化学研究与应用, 2002, 4(5): 608-610. Yao Jie, Wei Xiaowei. Preparation and application of heat-resistant additives for insulating paper[J]. Chemical Research and Application, 2002, 4(5): 608-610. [37] 杨雁, 袁磊, 王谦, 等. 不同复合热稳定剂对矿物油-改性纸绝缘系统热老化特性的影响[J]. 高电压技术, 2013, 39(5): 1121-1127. Yang Yan, Yuan Lei, Wang Qian, et al. Influence of different compound thermal stabilizers on aging characteristics of mineral oil-modified paper insulation system[J]. High Voltage Engineering, 2013, 39(5): 1121-1127. [38] Choi U S. Developments and applications of non- newtonian flows[M]. New York: ASME Publication, 1995. [39] Choi C, Yoo H, Oh J. Preparation and heat transfer properties of nanoparticle in transformer oil disper- sions as advanced energy-efficient coolants[J]. Current Applied Physics, 2008, 8(6): 710-712. [40] Segal V, Nattrass D, Raj K, et al. Accelerated thermal aging of petroleum-based ferrofluids[J]. Journal of Magnetism and Magnetic Materials, 1999, 201(1): 70-72. [41] Segal V, Rabinovich A, Nattrass D, et al. Expe- rimental study of magnetic colloidal fluids behavior in power transformers[J]. Journal of Magnetism and Magnetic Materials, 2000, 215-216: 513-515. [42] 周游. 雷电冲击电压下纳米粒子改变变压器油纸绝缘特性的机理[D]. 保定: 华北电力大学, 2015. [43] 缪金, 董明, 吴雪舟, 等. 纳米改性变压器油研究进展[J]. 中国电机工程学报, 2013, 33(9): 146-154. Miao Jin, Dong Ming, Wu Xuezhou, et al. Reviews on transformer oil-based nanofluids[J]. Proceedings of the CSEE, 2013, 33(9): 146-154. [44] 吴伟强. 纳米氧化铝改性纤维素绝缘纸的制备及性能研究[D]. 重庆: 重庆大学, 2010. [45] Lewis T J. Nannometric dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(5): 812-825. [46] Nelson J K, Dissado L A, Peasgood W. Towards an understanding of nanometric dielectrics[C]//Annual Report Conference on Electrical Insulation and Dielectric Phenonena, Quintana Roo, 2002: 295-298. [47] Balazs A C, Emnek T, Russell T P, et al. Nanoparticle polymer composites: where two small worlds meet[J]. Science, 2006, 314(5802): 1107-1110. [48] 廖瑞金, 吕程, 吴伟强, 等. 纳米TiO 2 改性绝缘纸的绝缘性能[J]. 高电压技术, 2014, 40(7): 1932- 1939. Liao Ruijin, Lü Cheng, Wu Weiqiang, et al. Insulating property of insualtion paper modified by Nano-TiO 2 [J]. High Voltage Engineering, 2014, 40(7): 1932-1939. [49] Xu W, Feng Y, Ding Y, et al. Short electrospun carbon nanofiber reinforced polyimide composite with high dielectric permittivity[J]. Materials Letters, 2015, 161: 431-434. [50] 王旗, 李喆, 尹毅. 微米无机颗粒/环氧树脂复合材料击穿强度性能[J]. 电工技术学报, 2014, 29(12): 230-235. Wang Qi, Li Zhe, Yin Yi. The effect of micro and nano inorganic filler on the breakdown strength of expoxy resin[J]. Transactions of China Elctro- technical Society, 2014, 29(12): 230-235. [51] Rab M A, Dhara R, Basappa P, et al. Effect of variation in main field and nanoparticle content on the partial discharge characteristics of polypropylene nanocomposites[J]. Journal of Nanophotonics, 2015, 9(1): 093588. [52] Zhou W, Wang Z, Dong L, et al. Dielectric properties and thermal conductivity of PVDF reinforced with three types of Zn particles[J]. Composites Part A: Applied Science and Manufacturing, 2015, 79: 183- 191. [53] Song Y, Yu J, Yu L, et al. Enhancing the thermal, electrical, and mechanical properties of silicone rubber by addition of graphene nanoplatelets[J]. Materials & Design, 2015, 88: 950-957. [54] Fereidoon A, Aleaghaee S, Taraghi I. Mechanical properties of hybrid graphene/TiO 2 (rutile) nanocom- posite: a molecular dynamics simulation[J]. Com- putational Materials Science, 2015, 102: 220-227. [55] Lewis T J. Interfaces are the dominant feature of dielectrics at the nanometric level[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2004, 11(5): 739-753. [56] Tanaka T, Kozako M, Fuse N, et al. Proposal of a multi-core model for polymer nanocomposite dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 669-681. [57] Murakami Y, Okuzumi S, Masuda S, et al. DC conduction and electrical breakdown of MgO/LDPE nanocomposite[J]. IEEE Transactions on Dielectric and Electrics Insulation, 2004, 11(5): 739-753. [58] Cao Y, Irwin P C, Younsi K. The future of nanodielectrics in the electrical power industry[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 797-807. [59] 王霞, 成霞, 陈少卿, 等. 纳米ZnO/低密度聚乙烯复合材料的介电特性[J]. 中国电机工程学报, 2008, 28(19): 13-19. Wang Xia, Cheng Xia, Chen Shaoqing, et al. Dielectric properties of the composites of nano- ZnO/low-density polyethylene[J]. Proceedings of the CSEE, 2008, 28(19): 13-19. [60] Li Shengtao, Yin Guilai, Bai Suna, et al. A new potential barrier model in epoxy resin nanodielect- rics[J]. IEEE Transactions on Dielectrics and Electrics Insulation, 2011, 18(3): 1535-1543. [61] Yang Wenhu, Yi Ran, Yang Xu, et al. Effect of particle size and dispersion on dielectric properties in ZnO/epoxy resin composites[J]. IEEE Transactions on Electrical and Electronic Materials, 2012, 13(3): 116-120. [62] Liao Ruijin, Zhang Fuzhou, Yang Lijun. Electrical and thermal properties of kraft paper reinforced with montmorillonite[J]. Journal of Applied Polymer Science, 2012, 126(1): 290-295. [63] 张福州, 廖瑞金, 袁媛, 等. 低介电常数绝缘纸的制备及其击穿性能[J]. 高电压技术, 2012, 38(3): 691-696. Zhang Fuzhou, Liao Ruijin, Yuan Yuan, et al. Preparation for low-permittivity insulation paper and its breakdown performance[J]. High Voltage Engin- eering, 2012, 38(3): 691-696. [64] 周远翔, 王宁华, 王云杉, 等. 固体电介质空间电荷研究进展[J]. 电工技术学报, 2008, 23(9):16-25. Zhou Yuanxiang, Wang Ninghua, Wang Yunshan, et al. Review of research on space charge in solid dielectrics[J]. Transactions of China Electrotechnical Society , 2008, 23(9): 16-25. [65] 周凯, 吴广宁, 邓桃, 等. 纳米复合绝缘材料的热刺激电流测试研究[J]. 中国电机工程学报, 2007, 27(18): 76-82. Zhou Kai, Wu Guangning, Deng Tao, et al. The measurement of TSC in nano composite insulation[J]. Proceedings of the CSEE, 2007, 27(18): 76-82. [66] 任辉. 聚酰亚胺/碳纳米管复合薄膜的电性能与热刺激电流研究[D]. 哈尔滨: 哈尔滨理工大学, 2011. [67] Li Ying, Takada T. Progress in space charge measurement of solid insulating materials in Japan[J]. IEEE Electrical Insulation Magazine, 1994, 10(5): 16-28. [68] Takada T. Acoustic and optical methods for measureing electric charge distributions in dielectrics[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(5): 519-547. [69] Morshuis P, Jeroense M. Space charge measurements on impregnated paper a review of the PEA method and a discussion of results[J]. IEEE Transactions on Electrical Insulation, 1997, 13(3): 26-35. [70] Liu R, Jaksts A. Moisture and space charge in oil-impregnated pressboard under HVDC[C]//IEEE International Conference on Conduction and Breakdown in Solid Dielectrics, Sweden, 1998: 17-22. [71] Liu R, Tornkvist C, Nsson K. Space charge distribution in composite oil cellulose insulation[C]// IEEE International Conference on Dielectric Liquids, Arlington, 1994: 316-321. [72] Mazzanti G, Montanari G C. Quantities extracted from space-charge measurements as markers for insulation aging[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(2): 198-203. [73] Fabiani D, Montanari G C, Cavallini A, et al. Relation between space charge accumulation and partial discharge activity in enameled wires under PWM-like voltage waveforms[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(3): 393-405. [74] Ciobanu R C, Pfeiffer W, Schreiner C. Charge packet evolution in paper-oil insulation and derived techno- logical considerations[C]//Proceedings of the 7th International Conference on Properties and Appli- cations of Dielectric Materials, Nagoya, 2003: 695-698. [75] 唐超. 油纸绝缘介质的直流空间电荷特性研究[D].重庆: 重庆大学, 2010. [76] 周远翔, 孙清华, 李光范, 等. 空间电荷对油纸绝缘击穿和沿面闪络的影响[J]. 电工技术学报, 2011, 26(2): 27-33. Zhou Yuanxiang, Sun Qinghua, Li Guangfan, et al. Effects of space charge on breakdown and creeping discharge of oil-paper insulation[J]. Transactions of China Elctrotechnical Society, 2011, 26(2): 27-33. [77] 周远翔, 黄猛, 戴超, 等. 不同含水量油纸绝缘热老化过程中的空间电荷特性研究[J]. 高电压技术, 2015, 41(6): 1921-1928. Zhou Yuanxiang, Huang Meng, Dai Chao, et al. Effect of moisture on space charge chracteristics of oil-paper insulation during thermal ageing[J]. High Voltage Engineering, 2015, 41(6): 1921-1928. [78] 薛久昌. 交流叠加极性反转电压下换流变压器油纸绝缘的击穿特性[D]. 哈尔滨: 哈尔滨理工大学, 2014. [79] 吴锴, 朱庆东, 王浩森, 等. 温度梯度下双层油纸绝缘系统的空间电荷分布特性[J]. 高电压技术, 2012, 38(9): 2366-2372. Wu Kai, Zhu Qingdong, Wang Haosen, et al. Space charge distribution characteristic in double-layer oil impregnated papers under temperature gradient[J]. High Voltage Engineering, 2012, 38(9): 2366-2372. [80] 魏艳慧, 穆海宝, 朱明晓, 等. 空间电荷对不同老化状态油纸绝缘击穿特性的影响[J]. 高电压技术, 2015, 41(9): 3066-3072. Wei Yanhui, Mu Haibao, Zhu Mingxiao, et al. Influence of space charge on breakdown characteri- stics of oil-paper insulation with different aging status[J]. High Voltage Engineering, 2015, 41(9): 3066-3072. [81] Guastavino F, Torello E, Squarcia S, et al. Insulation properties of LDPE nanocomposites obtained by the dispersion of different nanoparticles[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2): 444-451. [82] Ju S, Zhang H, Chen M, et al. Improved electrical insulating properties of LDPE based nanocomposite: effect of surface modification of magnesia nano- particles[J]. Composites Part A: Applied Science and Manufacturing, 2014, 66(6): 183-192. [83] Wang X, Lü Z, Wu K, et al. Study of the factors that suppress space charge accumulation in LDPE nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(4): 1670-1679. [84] 陈曦, 王霞, 吴锴, 等. 温度梯度场对高直流电压下聚乙烯中空间电荷及场强畸变的影响[J]. 电工技术学报, 2011, 26(3): 13-19. Chen Xi, Wang Xia, Wu Kai, et al. Space charge accumulation and stress distortion in polyethylene under high DC voltage and temperature gradient[J]. Transactions of China Elctrotechnical Society, 2011, 26(3): 13-19. [85] Zhang L, Zhou Y, Tian J, et al. Experiment and simulation of space charge suppression in LDPE/ MgO nanocomposite under external DC electric field[J]. Journal of Electrostatics, 2014, 72(4): 252-260. [86] Deng C, Zhao J, Deng C L, et al. Effect of two types of iron MMTs on the flame retardation of LDPE composite[J]. Polymer Degradation and Stability, 2014, 103(9): 1-10. [87] Hayase Y, Aoyama H, Matsui K, et al. Space charge formation in LDPE/MgO nano-composite film under ultra-high DC electric stress[J]. IEEE Transactions on Fundamentals and Materials, 2006, 126(11): 1084- 1089. [88] Chen G, Tay T Y G, Davies A E, et al. Electrodes and charge injection in low-density polyethylene using the pulsed electroacoustic technique[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8(6): 867-873. [89] 刘文辉, 吴建东, 王俏华, 等. 纳米添加物的粒径对聚合物纳米复合电介质中空间电荷行为的影响[J]. 中国电机工程学报, 2009, 29(增1): 61-66. Liu Wenhui, Wu Jiandong, Wang Qiaohua, et al. Effect of nano additive size on the space charge behavior in nanocomposite polymer material[J]. Proceedings of the CSEE, 2009, 29(S1): 61-66. [90] Roy M, Nelson J K, MacCrone R K, et al. Polymernanocomposite dielectrics: the role of the interface[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 629-643. [91] Lewis T J. Nanometric dielectrics[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 1994, 1(5): 812-825. [92] Lewis T J. Interfaces are the dominant feature of dielectrics at the nanometric level[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2004, 11(5): 739-753. [93] Tanaka T, Kozako M, Fuse N, et al. Proposal of a multi-core model for polymer nanocomposite dielect- rics[J]. IEEE Transactions on Dielectrics and Elec- trical Insulation, 2005, 12(4): 669-681. [94] Tanaka T, Bulinski A, Castellon J. Dielectric properties of XLPE/SiO 2 nanocomposites based on CIGRE WG D1. 24 cooperative test results[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(5): 1485-1516. [95] Suh K S, Yoon H G, Lee C R, et al. Space charge behavior of acrylic monomer-grafted polyethylene[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(3): 282-287. [96] Hosier I L, Vaughan A S, Swingler S G. The effects of morphology and molecular composition on the electrical properties of epoxy/clay nanocomposites- effects of curing agent and clay dispersion method[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(1): 24-32. [97] 刘团. 纳米ZnO/AlN改性绝缘纸的直流空间电荷特性研究[D]. 重庆: 重庆大学, 2010. [98] Roy M, Nelson J K, Mac Crone R K, et al. Polymer nanocomposite dielectrics-the role of the interface[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 629-643.