Abstract:The unknown parameters in arc damage modeling based on mathematical formulas need to be obtained. The temperature of the pipeline around is analyzed when parallel arc faults occur at DC 28V and AC 115V circuit with Ansys CFX and Mechanical APDL. The result is extracted to calculate the model parameters. Analogy is used to show the correctness of the model and the applicability of arc damage predication to other objects around.
[1] 王其平. 电器电弧理论[M]. 北京: 机械工业出版社, 1982. [2] Press V L, Bruning A M. Advanced risk assessment methods for aircraft electrical wiring interconnection systems[C]. 6th Joint FAA/DoD/NASA Conference on Aging Aircraft, San Francisco, CA, USA, Septem- ber, 2002. [3] Linzey W G. Development of an electrical wire inter- connect system risk assessment tool[M]. Lectromechanical Design Company, DOT/FAA/AR-TN06/17, 2006. [4] Van der Sluis L, Rutgers W R, Koreman C G A. A physical arc model for the simulation of current zero behaviour of high-voltage circuit breakers[J]. IEEE Transactions on Power Delivery, 1992, 7(2): 1016-1022. [5] Linzey W, Traskos M, Brunin A. Development of an arc damage modeling tool[Z]. Lectromechanical Design Company, 2007. [6] Kurek J, Bernstein R, Etheridge M. Aircraft wiring degradation study[Z]. Raytheon Technical Services Company LLC, DOT/FAA/AR-08/2, 2008. [7] Linzey W, Traskos M, Bruning A, et al. Progress in developing a software based arc damage modeling tool[C]. 10th Aging Aircraft Conference, 2008. [8] Linzey W G, Traskos M G, Bruning A M, et al. Arcing damage to aircraft components and wire at a distance[C]. 11th Aging Aircraft Conference, 2009. [9] Linzey W, Wiesenfeld E, Traskos M, et al. Electrical wire interconnect system risk assessment tool: U.S. Patent US7536284B2[P]. 2009-5-19. [10] Linzey W G, Traskos M G, Mazzuchi T A. Deve- lopment of the electrical wiring interconnection system risk assessment tool[Z]. Lectromechanical Design Company, DOT/FAA/AR-09/47, 2010. [11] Gammon T, Matthews J. Conventional and recomm- ended arc power and energy calculations and arc damage assessment[J]. IEEE Transactions on Industry Applications, 2003, 39(3): 594-599. [12] Swingler J, Mcbride J W. Modeling of energy trans- port in arcing electrical contacts to determine mass loss[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 1998, 21(1): 54-60. [13] 陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2001. [14] 宋学官, 蔡林, 张华. ANSYS流固耦合分析与工程实例[M]. 北京: 中国水利水电出版社, 2012. [15] 孙纪宁. ANSYS CFX对流传热数值模拟基础应用教程[M]. 北京: 国防工业出版社, 2010. [16] 刘志刚, 耿英三, 王建华, 等. 基于流场-温度场耦合计算的新型空心电抗器设计与分析[J]. 电工技术学报, 2003, 18(6): 59-63. Liu Zhigang, Geng Yingsan, Wang Jianhua, et al. Design and analysis of new type air-core reactor based on coupled fluid-thermal field calculation[J]. Transactions of China Electrotechnical Society, 2003, 18(6): 59-63. [17] 王惠, 丁峻宏. MFX-ANSYS/CFX流固耦合计算及其在“魔方”上的应用[J]. 计算机工程与科学, 2012, 34(8): 166-170. Wang Hui, Ding Junhong. The MFX-ANSYS/CFX fluid-solid coupling andits application in “magic cubes”[J]. Computer Engineering & Science, 2012, 34(8): 166-170.