Abstract:In order to overcome the stator overvoltage of electricity excitation direct-driven wind power generator in case of short-term overspeed, this paper studies the flux weakening control range of electrically excited synchronous generator (EESG). Flux weakening control can be obtained by reducing the rotor side excitation current, but the response is too slow because of the large rotor side inductance. This paper proposes a method of using the virtual impedance in the rotor side control system to reduce the inductance of the system. Simulation and experiment results show the flux weakening control of EESG based on virtual inductance has good dynamic response.
赵新, 吴学智, 李葛亮, 童亦斌. 利用虚拟阻抗改善电励磁同步发电机弱磁控制性能[J]. 电工技术学报, 2015, 30(22): 49-56.
Zhao Xin, Wu Xuezhi, Li Geliang, Tong Yibin. Improving the Flux Weakening Control Performance of Electrically Excited Synchronous Generators Based on Virtual Impedance. Transactions of China Electrotechnical Society, 2015, 30(22): 49-56.
[1] 杨恩星, 仇志凌, 陈国柱, 等. 并联双PWM变流器在低速永磁直驱风力发电系统中的应用[J]. 电力系统自动化, 2009, 33(10): 95-98. Yang Enxing, Qiu Zhiling, Chen Guozhu, et a1. Application of parallel dual PWM converter to the low-speed permanent magnet direct-driven wind turbine[J]. Automation of Electric Power Systems, 2009, 33(10): 95-98. [2] Li H, Chen Z. Overview of different wind generator systems and their comparisons[J]. IET Renewable Power Generation, 2008, 2(2): 123-138. [3] 唐芬, 金新民, 姜久春, 等. 兆瓦级直驱型永磁风力发电机无位置传感器控制[J]. 电工技术学报, 2011, 26(4): 19-25. Tang Fen, Jin Xinmin, Jiang Jiuchun, et al. Sensorless control of MW-level direct-drive permanent magnet wind generator[J]. Transactions of China Electrotech- nical Society, 2011, 26(4): 19-25. [4] Yamamoto H, Kurosawa R, Nakamura R. Novel vector controller for synchronous motor via inverse dynamics modeling[C]. Industry Applications Society Annual Meeting, Toronto, 1993, 1: 544-550. [5] 李志民, 张遇杰. 同步电动机调速系统[M]. 北京: 机械工业出版社, 1996. [6] 马小亮. 大功率交-交变频调速及矢量控制技术[M]. 北京: 机械工业出版社, 2004. [7] 李崇坚. 交流同步电机调速系统[M]. 北京: 科学出版社, 2006. [8] He J, Li Y. Analysis, design, and implementation of virtual impedance for power electronics interfaced distributed generation[J]. IEEE Transactions on Industry Applications, 2011, 47(6): 2525-2538. [9] 许津铭, 谢少军, 肖华锋. LCL滤波器有源阻尼控制机制研究[J]. 中国电机工程学报, 2012, 32(9): 27-33. Xu Jinming, Xie Shaojun, Xiao Huafeng. Research on control mechanism of active damping for LCL filters[J]. Proceedings of the CSEE, 2012, 32(9): 27-33. [10] He J, Li Y, Bosnjak D, Bosnjak D, et al. Investigation and active damping of multiple resonances in a parallel- inverter-based microgrid[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 234-246. [11] 于玮, 徐德鸿. 基于虚拟阻抗的不间断电源并联系统均流控制[J]. 中国电机工程学报, 2009, 29(24): 32-39. Yu Wei, Xu Dehong. Control scheme of paralleled UPS system based on output virtual resistance[J]. Proceedings of the CSEE, 2009, 29(24): 32-39. [12] 张宇, 余蜜, 刘方锐, 等. 模块化UPS采用虚拟阻抗的瞬时均流控制方法[J]. 中国电机工程学报, 2012, 32(21): 8-14. Zhang Yu, Yu Mi, Liu Fangrui, et al. Instantaneous current-sharing control strategy for modular UPS using virtual impedance[J]. Proceedings of the CSEE, 2012, 32(21): 8-14. [13] 宋海华, 谢震, 张兴, 等. 基于有源阻尼的DFIG低电压穿越控制研究[J]. 电力电子技术, 2011, 45(8): 42-44. Song Haihua, Xie Zhen, Zhang Xing, et al. Control for the DFIG low voltage ride through based on active damping[J]. Power Electronics, 2011, 45(8): 42-44. [14] 谢震, 张兴, 杨淑英, 等. 基于虚拟阻抗的双馈风力发电机高电压穿越控制策略[J]. 中国电机工程学报, 2012, 32(27): 16-23. Xie Zhen, Zhang Xing, Yang Shuying, et al. High voltage ride-through control strategy of doubly fed induction wind generators based on virtual impedance[J]. Proceedings of the CSEE, 2012, 32(27): 16-23. [15] Mohamed Y A R I, El Saadany E F. Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids[J]. IEEE Transactions on Power Electronics, 2008, 23(6): 2806-2816. [16] Li Y, Kao C. An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid[J]. IEEE Transactions on Power Electronics, 2009, 24(12): 2977-2988.