Abstract:The integration of large scale wind generation will seriously threaten the grid security for the lacking of effective inertia and damping. In this paper, based on the analysis of the traditional power control of variable speed wind turbines, the relationship between the virtual inertia, the rotor speed regulation and the network frequency variation is investigated firstly, and then the virtual inertia control strategy is proposed to support the inertia of the regional network with high wind penetration. Following that, the impact of the proposed virtual inertia control on system damping is discussed. An additional beneficial of the proposed control in terms of damping power system oscillations is observed, and thus the integrated control of virtual inertia with system damping on the active power loop is achieved. Furthermore, the reactive power damping control scheme is also devised to enhance the capability of the wind turbines to damp the power system oscillations corporately. Finally, a typical system with high capacity proportion of variable speed wind turbines is used to indicate the proposed control strategies. The simulation results show that with the proposed control scheme, the wind turbines not only have the fast respond to the network frequency, but also have the ability to damp the power system oscillations.
张祥宇, 付媛, 王毅, 王慧, 付超. 含虚拟惯性与阻尼控制的变速风电机组综合PSS控制器[J]. 电工技术学报, 2015, 30(1): 159-169.
Zhang Xiangyu, Fu Yuan, Wang Yi, Wang Hui, Fu Chao. Integrated PSS Controller of Variable Speed Wind Turbines with Virtual Inertia and Damping Control. Transactions of China Electrotechnical Society, 2015, 30(1): 159-169.
[1] Hughes F M, Lara O A, Jenkins N, et al. Control of DFIG-based wind generation for power network support[J]. IEEE Transactions on Power Systems, 2005, 20(4): 1958-1966. [2] 黄学良, 刘志仁, 祝瑞金, 等. 大容量变速恒频风电机组接入对电网运行的影响分析[J]. 电工技术学报, 2010, 25(4): 142-149. Huang Xueliang, Liu Zhiren, Zhu Ruijin, et al. Impact of power system integrated with large capacity of variable speed constant frequency wind turbines[J]. Transactions of China Electrotechnical Society, 2010, 25(4): 142-149. [3] Cardinal M, Miller N. Grid friendly wind plant controls: wind control-field test results[R]. Pittsburgh: GE Energy, 2006. [4] 刘其辉, 贺益康, 赵仁德. 交流励磁变速恒频风力发电系统的运行与控制[J]. 电工技术学报, 2008, 23(1): 129-136. Liu Qihui, He Yikang, Zhao Rende. Operation and control of AC-excited variable-speed constant-frequency wind power generation system[J]. Transactions of China Electrotechnical Society, 2008, 23(1): 129-136. [5] Li S, Haskew T A, Xu L. Conventional and novel control designs for direct driven PMSG wind turbines [J]. Electric Power System Research, 2010, 80(3): 218-228. [6] 郎永强, 张学广, 徐殿国, 等. 双馈电机风电场无功功率分析及控制策略[J]. 中国电机工程学报, 2007, 27(9): 77-82. Lang Yongqiang, Zhang Xueguang, Xu Dianguo, et al. Reactive power analysis and control of doubly fed induction generator wind farm[J]. Proceedings of the CSEE, 2007, 27(9): 77-82. [7] 严干贵, 王茂春, 穆钢, 等. 双馈异步风力发电机组联网运行建模及其无功静态调节能力研究[J]. 电工技术学报, 2008, 23(7): 98-104. Yan Gangui, Wang Maochun, Mu Gang, et al. Modeling of grid-connected doubly-fed induction generator for reactive power static regulation capacity study[J]. Transactions of China Electrotechnical Society, 2008, 23(7): 98-104. [8] Holdsworth L, Ekanayake J, Jenkins N. Power system frequency response from fixed speed and doubly fed induction generator-based wind turbines[J]. Wind Energy, 2004, 7(1): 21-35. [9] Ekanayake J, Jenkins N. Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency[J]. IEEE Transactions on Energy Conversion, 2004, 19(4): 800-802. [10] 王毅, 张祥宇, 李和明, 等. 永磁直驱风电机组对系统功率振荡的阻尼控制[J]. 电工技术学报, 2012, 27(12): 163-170. Wang Yi, Zhang Xiangyu, Li Heming, et al. Damping control of PMSG-based wind turbines for power system oscillations[J]. Transactions of China Electro- technical Society, 2012, 27(12): 163-170. [11] Hughes F M, Lara O A, Jenkins N, et al. A power system stabilizer for DFIG-Based wind generation[J]. IEEE Transactions on Power Systems, 2006, 21(2): 763-772. [12] 郝正航, 余贻鑫. 双馈风电场对电力系统阻尼影响的转矩分析[J]. 电工技术学报, 2011, 26(5): 152-158. Hao Zhenghang, Yu Yixin. Torque analysis for the influence of DFIG-based wind farm on damping of power system[J]. Transactions of China Electrotech- nical Society, 2011, 26(5): 152-158. [13] Gautam D, Goel L, Ayyanar R, et al. Control strategy to mitigate the impact of reduced inertia due to doubly fed induction generators on large power systems[J]. IEEE Transactions on Power System, 2011, 26(1): 214-224. [14] Lalor G, Mullane A, O’Malley M. Frequency control and wind turbine technologies[J]. IEEE Transactions on Power System, 2011, 26(4): 1905-1913. [15] Ren Le C C, Lin W T, Yin Y C. Enhancing frequency response control by DFIGs in the high wind penetrated power systems[J]. IEEE Transactions on Power System, 2011, 26(2): 164-170. [16] 关宏亮, 迟永宁, 王伟胜, 等. 双馈变速风电机组频率控制的仿真研究[J]. 电力系统自动化, 2007, 31(7): 61-65. Guan Hongliang, Chi Yongning, Wang Weisheng, et al. Simulation on frequency control of doubly fed induction generator based wind turbine[J]. Automation of Electric Power Systems, 2007, 31(7): 61-65. [17] 曹军, 王虹富, 邱家驹. 变速恒频双馈风电机组频率控制策略[J]. 电力系统自动化, 2009, 33(13): 78-82. Cao Jun, Wang Hongfu, Qiu Jiaju. Frequency control strategy of variable-speed constant-frequency doubly- fed induction generator wind turbine[J]. Automation of Electric Power Systems, 2009, 33(13): 78-82. [18] Mauricio J M, Mano A, Expósito A G. Frequency regulation contribution through variable-speed wind energy conversion systems[J]. IEEE Transactions on Power System, 2009, 24(1): 173-180. [19] Fan L L, Yin H P, Miao Z X. On active/reactive power modulation of DFIG-based wind generation for interarea oscillation damping[J]. IEEE Transactions on Energy Conversion, 2011, 26(2): 513-521. [20] Miao Z X , Fan L L, Osborn D, et al. Control of DFIG-based wind generation to improve interarea oscillation damping[J]. IEEE Transactions on Energy Conversion, 2009, 24(2): 415-422. [21] 关宏亮, 迟永宁, 戴慧珠, 等. 并网风电场改善系统阻尼的仿真[J]. 电力系统自动化, 2008, 32(13): 122-125. Guan Hongliang, Chi Yongning, Dai Huizhu, et al. A simulation on wind farm integration in improving power system damping[J]. Automation of Electric Power System, 2008, 32(13): 122-125. [22] Geng H, Yang G, Xu D W, et al. Unified power control for PMSG-based WECS operating under different grid conditions[J]. IEEE Transactions on Energy Conversion, 2011, 26(3): 822-830. [23] 李和明, 张祥宇, 王毅, 等. 基于功率跟踪优化的双馈风力发电机组虚拟惯性控制技术[J]. 中国电机工程学报, 2012, 32(7): 32-39. Li Heming, Zhang Xiangyu, Wang Yi, et al. Virtual inertia control of DFIG-based wind turbines based on the optimal power tracking[J]. Proceedings of the CSEE, 2012, 32(7): 32-39. [24] 倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002. [25] 姚伟, 文劲宇, 程时杰, 等. 考虑时滞影响的 SVC 广域附加阻尼控制器设计[J]. 电工技术学报, 2012, 27(3): 240-246. Yao Wei, Wen Jinyu, Cheng Shijie, et al. Design of wide-area supplementary damping controller of SVC considering time delays[J]. Transactions of China Electrotechnical Society, 2012, 27(3): 240-246. [26] 马幼捷, 周雪松. 静止无功补偿器非线性控制对系统功角稳定的影响[J]. 中国电机工程学报, 2003, 23(12): 84-88. Ma Youjie, Zhou Xuesong. Study on nonlinear SVC control for improving power system stability[J]. Proceedings of the CSEE, 2003, 23(12): 84-88. [27] 刘隽, 李兴源, 汤广福. SVC电压控制与阻尼调节间的相互作用机理[J]. 中国电机工程学报, 2008, 28(1): 12-17. Liu Jun, Li Xingyuan, Tang Guangfu. Interrelations between SVC voltage control and damping control[J]. Proceedings of the CSEE, 2008, 28(1): 12-17.