Rotor Position Measuring Method for Magnetic Levitation High Speed PMSM Based on Fuzzy Sliding Mode Observer
Zhang Hongshuai1, Wang Ping1, Han Bangcheng2, 3, Cheng Jinxu4
1. China University of Petroleum QingDao 266580 China; 2. Science and Technology on Inertial Laboratory Beihang University Beijing 100191 China; 3. Fundamental Science on Novel Inertial Instrument & Navigation System Technology Laboratory Beihang University Beijing 100191 China; 4. The Supply Department of Shengliyoutian Dongying 257100 China
Abstract:Focused on the chattering problem of the sliding mode observer(SMO) when the motor speed is low, this paper proposes a kind of magnetic levitation high speed PMSM(HSPMSM) rotor position measuring method based on fuzzy SMO. This method can suppress the chattering problem of the SMO which used the fuzzy control system to change the gain of the SMO. It is more powerful than the SMO based on saturation function which is analysed in theory. In this paper, simulation and experiment with a 4kW magnetic levitation high speed permanent magnet synchronous motor are carried out and the position estimation error is analyzed and a compensation method is proposed. The results demonstrate that the fuzzy SMO can effectively estimate the magnetic levitation high speed PMSM rotor position in a wide speed range.
张洪帅, 王平, 韩邦成, 程金绪. 基于模糊滑模观测器的磁悬浮高速永磁同步电机转子位置检测方法[J]. 电工技术学报, 2014, 29(7): 147-153.
Zhang Hongshuai, Wang Ping, Han Bangcheng, Cheng Jinxu. Rotor Position Measuring Method for Magnetic Levitation High Speed PMSM Based on Fuzzy Sliding Mode Observer. Transactions of China Electrotechnical Society, 2014, 29(7): 147-153.
[1] Sorin Cristian Agarlita. High frequency injection assisted “active-flux”-based sensorless vector controlof reluctance synchronous motors, with experiments from zero speed[J]. IEEE Transactions on Industry Applications, 2012, 48(6): 1931-1939. [2] 尹忠刚, 刘静, 钟彦儒, 等. 基于双参数模型参考自适应的感应电机无速度传感器矢量控制低速性能[J]. 电工技术学报, 2012, 27(7): 124-130. Yin Zhonggang, Liu Jing, Zhong Yanru, et al. Low- speed performance for induction motor sensorless vector control based on two-parameter model reference adaptation[J]. Transactions of China Eletrotechnical Society, 2012, 27(7): 124-130. [3] 尹忠刚, 张瑞峰, 钟彦儒, 等. 基于抗差扩展卡尔曼滤波器的永磁同步电机转速估计策略[J]. 控制理论与应用, 2012, 29(7): 921-927. Yin Zhonggang, Zhang Ruifeng, Zhong Yanru, et al. Speed estimation for permanent magnet synchronous motor based on robust extended Kalman filter[J]. Control Theory & Applications, 2012, 29(7): 921-927. [4] Qiao Zhaowei, Shi Tingna, Wang Yindong. New sliding-mode observer for position senseless control of permanent-magnet synchronous motor[J]. IEEE Transactions on Industry Electronics, 2013, 60(2): 710-719. [5] 丁文, 梁得亮, 罗战强. 两级滤波滑模观测器的永磁同步电机无位置传感器控制[J]. 电机与控制学报, 2012, 16(11): 1-10. Ding Wen, Liang Deliang, Luo Zhanqiang. Position sensorless control of PMSM using sliding mode observer with two-stage filter[J]. Electric Machines and Control, 2012, 16(11): 1-10. [6] Hongryel Kim, Jubum Son, Jangmyung Lee. A high-speed sliding-mode observer for the sensorless speed control of a PMSM[J]. IEEE Transactions on Industrial Electronics, 2011, 58(9): 4069-4077. [7] Su Jianyong, Li Tiecai, Yang Guijie. PMSM sensorless control based on four-order hybrid sliding mode observer [J]. Proceedings of the CSEE, 2009, 29(24): 98-103. [8] 李冉, 赵光宙, 徐绍娟. 基于扩展滑模观测器的永磁同步电动机无传感器控制[J]. 电工技术学报, 2012, 27(3): 79-84. Li Ran, Zhao Guangzhou, Xu Shaojuan. Sensorless control of permanent magnet synchronous motor based on extended sliding mode observer[J]. Transactions of China Eletrotechnical Society, 2012, 27(3): 79-84. [9] 申忠宇, 赵瑾, 顾幸生, 等. 基于T-S模型的鲁棒模糊滑模观测器LMI设计方法[J]. 中南大学学报 (自然科学版), 2009, 40(1): 43-47. Shen Zhongyu, Zhao Jin, Gu Xingsheng, et al. Design of robust fuzzy sliding-mode observer based on T-S model by LMI approach[J]. Journal of Central South University (Science and Technology), 2009, 40(1): 43-47. [10] 王巍, 汪玉凤, 郭凤仪. 基于滑模观测器的PMSM模糊滑模控制[J]. 微特电机, 2010(8): 44-47. Wang Wei, Wang Yufeng, Guo Fengyi. Fuzzy sliding mode control strategy of pmsm based on sliding mode observer[J]. Small & Special Electrical Machines, 2010(8): 44-47.