Abstract:A new method for partial discharge feature extraction based on cross-wavelet and correlation coefficient matrix is proposed aimed at the characteristic quantities’ high-dimension and high-sensitive to noise. Cross-wavelet transform method gives analysis between time and frequency domain for signals. The method is immune to the noise and it is applied for power transformer partial discharge signal analysis. New characteristic quantities are obtained representing cross- wavelet spectrum. And then correlation coefficient matrix is constructed for correlation analysis of extracted characteristic quantities, and those which have similar classification ability are eliminated. Finally probabilistic neural networks and back propagation neural network classifiers are utilized for pattern recognition. Simulation results demonstrate that the proposed method is effective.
尚海昆, 苑津莎, 王瑜, 靳松. 基于交叉小波变换和相关系数矩阵的局部放电特征提取[J]. 电工技术学报, 2014, 29(4): 274-281.
Shang Haikun, Yuan Jinsha, Wang Yu, Jin Song. Feature Extraction for Partial Discharge Based on Cross-Wavelet Transform and Correlation Coefficient Matrix. Transactions of China Electrotechnical Society, 2014, 29(4): 274-281.
[1] Mazroua Amira A, Bartnikas R, Salama M M A. Discrimination between PD pulse shapes using different neural network paradigms[J]. IEEE Transactions on Electrical Insulation, 1994, 1(6): 1119-1131. [2] 胡文堂, 高胜友, 余绍峰, 等. 统计参数在变压器局部放电模式识别中的应用[J]. 高电压技术, 2009, 35(2): 277-281. Hu Wentang, Gao Shengyou, Yu Shaofeng, et al. Application of statistic parameters in recognition of partial discharge in transformers[J]. High Voltage Engineering, 2009, 35(2): 277-281. [3] Gulski E, Kreuger F H. Computer-aided recognition of discharge sources[J]. IEEE Transactions on Electrical Insulation, 1992, 27(1): 82-92. [4] 任先文, 薛雷, 宋阳, 等. 基于分形特征的最小二乘支持向量机局部放电模式识别[J]. 电力系统保护与控制, 2011, 39(14): 143-147. Ren Xianwen, Xue Lei, Song Yang, et al. The pattern recognition of partial discharge based on fractal characteristics using LS-SVM[J]. Power System Protection and Control, 2011, 39(14): 143-147. [5] Satish L, Zaengl W S. Can fractal features be used for recognizing 3-D partial discharge patterns[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(3): 352-359. [6] 张晓虹, 张亮, 乐波, 等. 基于局部放电的矩特征分析大电机主绝缘的老化[J]. 中国电机工程学报, 2002, 22 (5): 94-98. Zhang Xiaohong, Zhang Liang, Le Bo, et al. Analysis on aging condition of stator winding insulation of generator based on the moment characteristics of partial discharge[J]. Proceedings of the CSEE, 2002, 22(5): 94-98. [7] Grinsted A, Moore J C, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Processes in Geophysics, 2004(11): 561-566. [8] 孙卫国, 程炳岩. 交叉小波变换在区域气候分析中的应用[J]. 应用气象学报, 2008, 19(4): 480-487. Sun Weiguo, Cheng Bingyan. Application of cross wavelet transformation to analysis on regional climate variations[J]. Journal of Applied Meteorological Science, 2008, 19(4): 480-487. [9] Ruessink B G, Coco G, Ranasinghe R, et al. A cross-wavelet study of alongshore nonuniform nearshore sandbar behavior[C]. International Joint Conference on Neural Networks, 2006: 4310-4317. [10] Kyprianou A, Staszewski W J. On the cross-wavelet analysis of doffing oscillator[J]. Journal of Sound and Vibration, 1999, 228(1): 199-210. [11] 杨若文, 曹杰, 黄玮, 等. 太阳常数与太阳黑子数关系的交叉小波分析[J]. 科学通报, 2009, 54(7): 871-875. Yang Ruowen, Cao Jie, Huang Wei, et al. Cross wavelet analysis of the relationship between total solar irradiance and sunspot number[J]. Chinese Science Bulletin, 2009, 54(7): 871-875. [12] 张进, 冯志鹏, 卢文秀, 等. 交叉小波变换在水轮机非平稳信号分析中的应用[J]. 中国电机工程学报, 2010, 30(23): 84-89. Zhang Jin, Feng Zhipeng, Lu Wenxiu, et al. Application of cross-wavelet transform to hydraulic turbine nonstationary signal analysis[J]. Proceedings of the CSEE, 2010, 30(23): 84-89. [13] 余丹丹, 张韧, 洪梅, 等. 基于交叉小波与小波相干的西太平洋副高与东亚夏季风系统的关联性分析[J]. 南京气象学院学报, 2007, 30(6): 755-769. Yu Dandan, Zhang Ren, Hong Mei, et al. Correlation analysis between the west pacific subtropical high and the east asian summer monsoon system based on cross wavelet and wavelet coherence[J]. Journal of Nanjing Institute of Meteorology, 2007, 30(6): 755-769. [14] 唐炬, 孙才新, 宋胜利, 等. 局部放电信号中的白噪声和窄带干扰[J]. 高电压技术, 2002, 28(12): 8-10. Tang Ju, Sun Caixin, Song Shengli, et al. Application of wavelet packet transform to the suppression of white-noise and periodic narrowband interference in partial discharge signals[J]. High Voltage Engineering, 2002, 28(12): 8-10. [15] Torrence C, Compo G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1): 61-79. [16] 李剑, 王小维, 金卓睿, 等. 变压器局部放电超高频信号多尺度网格维数的提取与识别[J]. 电网技术, 2010, 34(2): 159-163. Li Jian, Wang Xiaowei, Jin Zhuorui, et al. Multi-scale grid dimension extraction and recognition of ultra- high frequency signals of transformer partial discharge [J]. Power System Technology, 2010, 34(2): 159-163. [17] Dey D, Chatterjee B, Chakravorti S, et al. Rough- granular approach for impulse fault classification of transformers using cross-wavelet transform[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(5): 1297-1304. [18] 任江涛, 黄焕宇, 孙婧昊, 等. 基于相关性分析及遗传算法的高维数据特征选择[J]. 计算机应用, 2006, 26(6): 1403-1405. Ren Jiangtao, Huang Huanyu, Sun Jinghao, et al. H igh-dimensional data feature selection based on relevance analysis and GA[J]. Computer Applications, 2006, 26(6): 1403-1405. [19] Yu L, Liu H. Efficient feature selection via analysis of relevance and redundancy[J]. Journal of Machine Learning Research, 2004: 1205-1224. [20] Liu H, Yu L. Toward integrating feature selection algorithms for classification and clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(4): 491-502. [21] 何晓群. 现代统计分析方法与应用[M]. 北京: 中国人民大学出版社, 2007. [22] 李森, 宋国兵, 康小宁, 等. 基于时域下相关分析法的小电流接地故障选线[J]. 电力系统保护与控制, 2008, 36(13): 15-20. Li Sen, Song Guobing, Kang Xiaoning, et al. Time-domain fault line selection based on correlation analysis in neutral indirect ground system[J]. Power System Protection and Control, 2008, 36(13): 15-20.