Phase Compensation Resonant Control Scheme for Single Phase PWM Converters
Yang Yunhu1, 3, Zhou Keliang2, Cheng Ming3, Ge Lusheng1
1. School of Electrical & Information Engineering, Anhui University of Technology Ma’anshan 243032 China 2. Department of Electrical and Computer Engineering, University of Canterbury New Zealand 3. School of Electrical Engineering, Southeast University Nanjing 210096 China
Abstract:In this paper, phase compensation resonant control scheme is proposed for PWM converters. With the help of the phase compensation principle of repetitive control, the phase compensation principle of resonant control is illustrated and the organic link is build between phase compensation repetitive control and phase compensation resonant control. Compared with phase compensation repetitive controller, phase compensation resonant controller can independently provide required compensation phase at any harmonics to expectably achieve “zero phase” compensation, and the stable range is thus expanded. Moreover, according to the magnitude of each harmonic, the gain of each resonant controller can be correspondingly selected to optimize system performance. An application example of single-phase PWM inverter is provided to systematically demonstrate the effectiveness of the proposed control scheme.
杨云虎, 周克亮, 程明, 葛芦生. 单相PWM变换器相位补偿谐振控制方案[J]. 电工技术学报, 2013, 28(4): 65-71.
Yang Yunhu, Zhou Keliang, Cheng Ming, Ge Lusheng. Phase Compensation Resonant Control Scheme for Single Phase PWM Converters. Transactions of China Electrotechnical Society, 2013, 28(4): 65-71.
[1] Lo Y K, Wang J M, Lee T P. Dead-time assignment for single-phase half-bridge PWM inverters[J]. International Journal of Circuit Theory and Applications, 2008, 36(2): 211-217. [2] Jung S L, Tzou Y Y. Discrete sliding-mode control of a PWM inverter for sinusoidal output waveform with optimal sliding curve[J]. IEEE Transactions on Power Electronics, 1996, 11(4):567-577. [3] Zhu M, Luo F L. Transient analysis of multi-state DC-DC converters using system energy characteristics [J]. International Journal of Circuit Theory and Applications, 2008, 36(3): 327-344. [4] Francis B A, Wonham W M. The internal model principle of control theory[J]. Automatica, 1976, 12(5): 457-465. [5] 涂春明, 罗安, 汤赐, 等. 注入式混合型有源电力滤波器的控制算法[J]. 中国电机工程学报, 2008, 28(24): 52-57. [6] Lenwari Wanchak, Sumner Mark, Zanchetta Pericle. The use of genetic algorithms for the design resonant compensators for active filters[J]. IEEE Transactions on Industrial Electronics, 2009, 56(8): 2852-2861. [7] 李子欣, 王平, 李耀华, 等. 采用数字控制的400Hz大功率逆变电源[J]. 中国电机工程学报, 2009, 29(6): 36-42. [8] 胡文华. 大容量400Hz中频逆变电源波形质量控制技术研究[D]. 武汉:华中科技大学, 2010. [9] Tomizuka M. Zero phase error tracking algorithm for digital control[J]. Journal of Dynamic Systems, Measurement, and Control 1987, 109(2): 65-68. [10] Zhou Keliang, Low Kay Soon, Wang Danwei, et. al. Zero-phase odd-harmonic repetitive controller for a single-phase PWM inverter[J]. IEEE Transactions on Power Electronics, 2006, 21(1): 193-201. [11] Zhang Bin, Wang Danwei, Zhou Keliang, et al. Linear phase lead compensation repetitive control of a CVCF PWM inverter[J]. IEEE Transactions on Industrial Electronics, 2008, 55(4): 1595-1602. [12] Zhang Bin, Zhou Keliang, Wang Yigang, et al. Performance improvement of repetitive controlled PWM inverters: a phase-lead compensation solution[J]. International Journal of Circuit Theory and Applications, 2010, 38(5): 453-469. [13] Gradshteyn L S, Ryzhik L M. Table of integrals, series, and products[M]. San Diego, CA: Academic Press, 2007. [14] Katsuhiko Ogata. 离散时间控制系统[M]. 北京: 机械出版社, 2006. [15] Franklin G F, Powell J D, Workman M. Digital control of dynamic systems[M]. London: Addison Wesley Longman Inc, 1998. [16] Wang D, Ye Y. Design and experiments of anticipatory learning control: frequency domain approach[J]. IEEE/ASME Transactions of Mechatronics, 2005, 10(3): 305-313.