Abstract:Continuum electromechanical wave theory is a novel modeling approach for studying the electromechanical dynamic characteristics of large-scale power systems. Based on the theoretical derivation, the equations and their propagation characteristics of electromechanical wave in the continuum model and electromechanical disturbance in the discrete model for power system are studied in this paper. At the same time, the one-to-one correspondence relations of those main physical parameters, including propagation velocity, critical velocity, propagation constant, characteristic impedance, reflection coefficients, in the two models are also analyzed profoundly. The results show that the propagation of electromechanical disturbance between the two models of power system have the almost same physical properties, which proves the continuum model is a kind of approximate method of the discrete model, and can be completely utilized to describe the dynamic characteristics and the internal mechanism of electromechanical disturbance propagation in a vaster spatial dimension.
王德林, 郭成. 电力系统连续体和离散模型中机电扰动传播的一致性研究[J]. 电工技术学报, 2012, 27(6): 161-167.
Wang Delin, Guo Cheng. Study on Consistency of Electromechanical Disturbance Propagation in Continuum and Discrete-Models for Power Systems. Transactions of China Electrotechnical Society, 2012, 27(6): 161-167.
[1] 韩英铎, 闵勇, 洪绍斌. 复杂扩展式电力系统功率频率动态过程分析[J]. 电力系统自动化, 1992, 16(l): 28-33. [2] 蔡泽祥, 徐志勇, 申洪. 电力系统频率稳定分析的直接法[J]. 电力系统及其自动化学报, 1999, 11(12): 13-17. [3] 林湘宁, 刘沛, 程时杰. 电力系统振荡中轻微故障识别的小波算法研究[J]. 中国电机工程学报, 2000, 20(3): 39-44. [4] 金敏杰, 陈家荣, 梅生伟, 等. 基于改进信号能量法估计暂态稳定极限[J]. 中国电机工程学报, 2004, 24(9): 1-6. [5] 杜正春, 刘伟, 方万良, 等. 小干扰稳定分析中一种关键特征值计算的稀疏实现[J]. 中国电机工程学报, 2005, 25(2): 17-21. [6] 江全元, 程时杰, 曹一家, 等. 基于鲁里叶型Lyapunov函数的电力系统次同步谐振稳定运行域的分析[J]. 中国电机工程学报, 2002, 22(8): 1-5. [7] Zhong Zhian, Xu C C, Billian B J, et al. Power system frequency monitoring network (FNET) implementation[J]. IEEE Transactions on Power Systems, 2005, 20(4): 1916-1921. [8] Semlyen A. Analysis of disturbance propagation in power systems based on a homogeneous dynamic model[J]. IEEE Transactions on Power Apparatus and System, 1974, 93 (2): 676-684. [9] Dersin P, Levis A H. Aggregate feasibility sets for large power networks[C]. Proceedings of 9th Triennial World Congress, IFAC, Budapest, Hungary, 1984. [10] 韩英铎. 电力系统的中长期稳定及非均匀动态等值研究(I, II) [J]. 清华大学学报(自然科学版), 1989, 29(4): 1-18. [11] Thorp J S, Seyler C E, Phadke A G. Electromechanical wave propagation in large electric power systems[J]. IEEE Transactions on Circuits and Systems-I, 1998, 45(6): 614-622. [12] Parashar M, Thorp J S, Seyler C E. Continuum modeling of electromechanical dynamics in large electric power systems[J]. IEEE Transactions on Circuits and Systems-I, 2004, 51(9): 1848-1858. [13] Parashar M. Continuum modeling of power networks[D]. Cornell University, Ithaca, NY, 2003. [14] Lesieutre B C, Scholtz E, Verghese G C. Impedance matching controllers to extinguish electromechanical waves in power networks[C]. IEEE Conference on Control Applications, Glasgow, Scotland, 2002. [15] Scholtz E. Observer-based monitors and distributed wave controllers for electromechanical disturbances in power systems[D]. Boston: Massachusetts Institute of Technology, 2004. [16] 王德林, 王晓茹, Thorp J S. 电力系统的连续体系机电波模型[J].中国电机工程学报, 2006, 26(17): 30-37. [17] 王德林, 王晓茹. 电力系统连续体模型中机电波传播特性研究[J].中国电机工程学报, 2007, 27(16): 43-48. [18] 王德林, 王晓茹. 电力系统中机电扰动的传播特性分析[J]. 中国电机工程学报, 2007, 27(19): 18-24. [19] Crawford F S. Waves: Berkeley physics course[M]. New York: McGraw-Hill, 1968. [20] 陈崇源. 高等电路[M]. 武汉: 武汉大学出版社, 2000. [21] (法) 安德烈· 安戈. 电工电信工程师手册[M]. 陆志刚, 等译. 北京: 人民邮电出版社, 1979.