Optimal Allocation of Intermittent Distributed Generation Considering Complementarity in Distributed Network
Deng Wei1,Li Xinran1,Li Peiqiang1,Li Jinxin1,Sun Qian1,Chen Donglin2
1. Hunan University Changsha 410082 China 2.Key Laboratory of Regenerative Energy Electric-Technology of Hunan Province Changsha University of Science & Technology Changsha 410082 China
Abstract:With respect to the difference and complementarity of the probability distribution on the time and space,which between system load and output power of intermittent distributed generation(DG),such as wind generation(WG),solar photovoltaic(PV),by dividing time into section and considering the probability distribution of intermittent distributed generation and system load in each time-section,the optimum allocation model is built by using chance-constrained programming method. Taking the optimum comprehensive benefit of investment and the sale of electricity,the system loss reduction,voltage quality and the best overall efficiency of emission reductions as objective function,the discrete variables-friendly genetic algorithm is chosen for optimum solution. The numerical results show that optimum allocation model in this paper has taken sufficient consideration of the difference and complementarity of the probability distribution on the time and space between system load and output power of intermittent DG. And the model also gives a relatively all-round reflection of comprehensive operating benefit of economy,environment and voltage quality after intermittent DG#x00060;s injection into the system,which helps to testify its rationality and validity.
[1] 陈海焱, 段献忠, 陈金富. 分布式发电对配网静态电压稳定性的影响[J]. 电网技术, 2006, 30(19):27-30. Chen Haiyan, Duan Xianzhong, Chen Jinfu. Impacts of distributed generation on steady state voltage stability of distribution system[J]. Power System Technology, 2006, 30(19): 27-30. [2] 胡骅, 吴汕, 夏翔, 等. 考虑电压调整约束的多个分布式电源准入功率计算[J]. 中国电机工程学报, 2006, 26(19): 13-17. Hu Hua, Wu Shan, Xia Xiang, et al. Computing the maximum penetration level of multiple distributed generators in distribution network taking into account voltage regulation constraints[J]. Proceedings of the CSEE, 2006, 26(19): 13-17. [3] Hadjsaid N, Canard J, Dumas F. Dispersed generation impact on distribution networks[J]. IEEE Computer Applications in Power, 1999, 12(2): 22-28. [4] Puttgen H, MacGregor P, Lambert F. Distributed generation: semantic hype of the dawn of a new era[J]. IEEE Power and Energy Magazine, 2003, 1(1): 22-29. [5] 裴玮, 盛鹍, 孔力, 等. 分布式电源对配网供电电压质量的影响与改善[J]. 中国电机工程学报, 2008, 28(13): 152-157. Pei Wei, Sheng Kun, Kong Li, et al. Impact and improvement of distributed generation on distribution network voltage quality[J]. Proceedings of the CSEE, 2008, 28(13): 152-157. [6] Zhang W Y, Zhu S Z, Zheng J H, et al. Impacts of distributed generation on electric grid and selecting of isolation transformer[C]. IEEE/PES Transmission and Distribution Conference and Exhibition: Asia and Pacific, Dalian, China, 2005. [7] Kashem M A, Le A D T, Negnevitsky M, et al. Distributed generation for minimization of power losses in distribution systems[C]. IEEE Power Engineering Society General Meeting, Montreal, Canada, 2006. [8] 迟永宁, 王伟胜, 戴慧珠. 改善基于双馈感应发电机的并网风电场暂态电压稳定性研究[J]. 中国电机工程学报, 2007, 27(25): 25-31. Chi Yongning, Wang Weisheng, Dai Huizhu. Study on transient voltage stability enhancement of grid-connected wind farm with doubly fed induction generator installations[J]. Proceedings of the CSEE, 2007, 27(25): 25-31. [9] El-Khattam W, Bhattacharya K, Hegazy Y, et al. Optimal investment planning for distributed generation in a competitive electricity market[J]. IEEE Transactions on Power Systems, 2004, 19(3): 1674-1684. [10] El-Khattam W, Hegazy Y, Salama M M A. An integrated distributed generation optimization model for distribution system planning[J]. IEEE Transactions on Power Systems, 2005, 20(2): 1158-1165. [11] Keane A, O'Malley M. Optimal allocation of embedded generation on distribution networks[J]. IEEE Trans on Power Systems, 2005, 20(3): 1640-1646. [12] 张节潭, 程浩忠, 姚良忠, 等. 分布式风电源选址定容规划研究[J]. 中国电机工程学报, 2009, 29(16): 1-7. Zhang Jietan, Cheng Haozhong, Yao Liangzhong, et al. Study on siting and sizing of distributed wind generation[J]. Proceedings of the CSEE, 2009, 29(16): 1-7. [13] 郑漳华, 艾芊, 顾承红, 等. 考虑环境因素的分布式发电多目标优化配置[J]. 中国电机工程学报, 2009, 29(13): 23-28. Zheng Zhanghua, Ai Qian, Gu Chenghong, et al. Multi-objective allocation of distributed generation considering environmental factor[J]. Proceedings of the CSEE, 2009, 29(13): 23-28. [14] Seguro J V, Lambert T W. Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 85(1): 75-84. [15] Feijoo A E, Cidras J, Dornelas J L G. Wind speed simulation in wind farms for steady-state security assessment of electrical power systems[J]. IEEE Transactions on Energy Conversion, 1999, 14(4): 1582-1588. [16] Karakish, Chedid R B, Ramadan, Probabibstic performance assessent of autonomous solar-wind energy conversion systems[J]. IEEE Transactions on Engry Conversion, 1999, 14(3): 766-772. [17] Abouzahr I, Ramakumar R. An approach to assess the performance of utility-interactive wind electric conversion systems[J]. IEEE Transactions on Energy Conversion, 1991, 6(4): 627-638. [18] Feijoo A E, Cidras J. Modeling of wind farms in the load flow analysis[J]. IEEE Transactions on Power Systems, 2000, 15(1): 110-115. [19] Karaki S H, Chedid R B, Ramadan R. Probabilistic performance assessment of autonomous solar-wind energy conversion systems[J]. IEEE Transactions on Energy Conversion, 1999, 14(3): 766-772. [20] 王成山, 郑海峰, 谢莹华, 等. 计及分布式发电的配电系统随机潮流计算[J]. 电力系统自动化, 2005, 29(14): 39-44. Wang Chengshan, Zheng Haifeng, Xie Yinghua, et al. Probabilistic powet flow containing distributed generation in distribution system[J]. Automation of Electric Power Systems, 2005, 29(14): 39-44. [21] 王锡凡, 王秀丽. 电力系统的随机潮流分析[J]. 西安交通大学学报, 1988, 22(3): 87-97. Wang Xifan, Wang Xiuli. Probabilistic load flow analysis in power systems[J]. Journal of Xi#x02032;an Jiaotong University, 1988, 22(3): 87-97. [22] 胡泽春, 王锡凡, 张显, 等. 考虑线路故障的随机潮流[J]. 中国电机工程学报, 2005, 25(24): 26-33. Hu Zechun, Wang Xifan, Zhang Xian, et al. Probabilistic load flow method considering branch outages[J]. Proceedings of the CSEE, 2005, 25(24): 26-33. [23] 胡泽春, 王锡凡. 考虑负荷概率分布的随机最优潮流方法[J]. 电力系统自动化, 2007, 31(16): 14-18. Hu Zechun, Wang Xifan. Stochastic optimal power flow approach considering load probabilistic distributions[J]. Automation of Electric Power Systems, 2007, 31(16): 14-18. [24] 刘健, 徐精求, 董海鹏. 配电网概率负荷分析及其应用[J]. 电网技术, 2004, 28(6): 67-75. Liu Jian1, Xu Jingqiu, Dong Haipeng. Probabilistic load flow analysis of distribution network and its application[J]. Power Systems Technology, 2004, 28(6): 67-75. [25] Zhang P, Lee S T. Probabilistic load flow computation using the method of combined cumulants and gram-charlier expansion[J]. IEEE Transactions on Power Systems, 2004, 19(1): 676-682. [26] Baran M E, Wu F F. Network reconfiguration in distribution systems for loss reduction and load balancing[J]. IEEE Transactions on Power Delivery, 1989, 4(4): 1401-1407.