Abstract:In 3G communication system, the input radio frequency signal to the power amplifier characterizes of high bandwidth and non-constant envelope. Under this condition, constant amplitude power supply to the power amplifier will lead to significant power loss. Therefore, in order to enhance efficient operation, high speed envelope tracking power supply will be used in the future. In this paper, the concept and application backgrounds of high speed envelope tracking power supply are introduced. Meanwhile based on the classification and generalization of all the existent schemes, the advantages, application areas and the shortages when directly used in high speed envelope tracking occasions are discussed. Finally, it is pointed out that the proper system structure, the design of high frequency and high efficiency driving circuit, and the considerations on parasitic effects are the most important challenges in the proposed area.
郗焕, 熊小玲, 阮新波. 高速电压随动电源的发展及面临的挑战[J]. 电工技术学报, 2011, 26(9): 151-159.
Xi Huan, Xiong Xiaoling, Ruan Xinbo. Development and Design Challenges of High Speed Envelope Tracking Power Supply. Transactions of China Electrotechnical Society, 2011, 26(9): 151-159.
[1] Raab F H, Asbeck P, Cripps S, et al. RF and microwave power amplifier and transmitter technologies[J]. High Frequency Electronics, 2003, 2(3): 22-54. [2] Nujira energy primer[OL]. Available: http://www. nujira.com. [3] Nujira modulator flyer[OL]. Available: http://www. nujira.com. [4] Soto A, Oliver J A, Cobos J A, et al. Power supply for a radio transmitter with modulated supply voltage[C]. Proceedings of the IEEE Applied Power Electronics Conference, 2004: 392-398. [5] Nujira whitepaper. Driving down operator OPEX-the crucial contribution of ultra-high efficiency RF power amplifiers[OL]. Available: http://www.nujira.com. [6] Kahn L R. Single sideband transmission by envelope elimination and restoration[C]. Proceedings of the Institute of the Radio Engineers, 1952: 803-806. [7] Raab F H, Sigmon B E, Myers R G, et al. L-band transmitter using Kahn EER technique[J]. IEEE Transactions on Microwave Theory and Techniques, 1998, 46(12): 2220-2225. [8] Staudinger J, Gilsdorf B, Newman D, et al. High efficiency CDMA RF power amplifier using dynamic envelope tracking technique[C]. IEEE MTT-S Digest, 2000: 873-876. [9] Saleh A A M, Cox D C. Improving the power-added efficiency of FET amplifiers operating with varying- envelope signals [J]. IEEE Transactions on Microwave Theory and Techniques, 1983, 31(1): 51-56. [10] Lai Z, Smedley K M. A low distortion switching audio power amplifier[C].Proceedings of the IEEE Power Electronics Specialist Conference, 1995: 174-180. [11] Ranjan M, Koo K H, Hanington G, et al. Microwave power amplifiers with digitally-controlled power supply voltage for high efficiency and high linearity[C]. IEEE MTT-S Digest, 2000: 493-496. [12] Sahu B, Rincón-Mora G A. System-level requirements of DC-DC converters for dynamic power supplies of power amplifiers [C].Proceedings of the IEEE Application Specific Integrated Circuit, 2002: 149- 152. [13] Yousefzadeh V, Wang N, Maksimović D, et al. Digitally controlled DC-DC converter for RF power amplifier[C].Proceedings of the IEEE Applied Power Electronics Conference, 2004: 81-87. [14] Yousefzadeh V, Alarcón E, Maksimović D. Three- level buck converter for envelope tracking applications[J]. IEEE Transactions on Power Electronics, 2006, 21(2): 549-552. [15] Hanington G, Chen P, Asbeck P M, et al. High- efficiency power amplifier using dynamic power- supply voltage for CDMA applications[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(8): 1471-1476. [16] Yundt G B. Series parallel connected composite amplifiers[D]. Cambridge: Massachusetts Institute of Technology, 1983. [17] Yousefzadeh V, Alarcón E, Maksimović D. Efficiency optimization in linear-assisted switching power converters for envelope tracking in RF power amplifiers[C].Proceedings of the IEEE International Symposium on Circuits and Systems, 2005: 1302-1305. [18] Ertl H, Kolar J W, Zach F C. Basic considerations and topologies of switched-mode assisted linear power amplifiers[J]. IEEE Transactions on Industrial Electronics, 1997, 44(1): 116-123. [19] Van der Zee R A R, Van Tuijl A J M. A power- efficient audio amplifier combining switching and linear techniques[J]. IEEE Journal of Solid-State Circuits, 1999, 34(7): 985-991. [20] Midya P. Linear switcher combination with novel feedback[C].Proceedings of the IEEE Power Electronices Specialist Conference, 2000: 1425-1429. [21] Høyerby M C W, Andersen M A E. Self-oscillating soft switching envelope tracking power supply for Tetra2 base station[C]. Proceedings of the International Telecomm-unications Energy Conference, 2007: 53-60. [22] Høyerby M C W, Andersen M A E. Envelope tracking power supply with fully controlled 4th order output filter[C].Proceedings of the IEEE Applied Power Electronics Conference, 2006: 993-1000. [23] Anderson D R, Cantrell W H. High-efficiency high- level modulator for use in dynamic envelope tracking CDMA RF power amplifiers[C]. IEEE MTT-S Digest, 2001: 1509-1512. [24] Høyerby M C W, Andersen M A E. High-bandwidth, high-efficiency envelope tracking power supply for 40W RF power amplifier using paralleled bandpass current sources[C].Proceedings of the IEEE Power Electronics Specialist Conference, 2005: 2804- 2809. [25] Nagle P, Burton P, Heaney E, et al. A wide-band linear amplitude modulator for polar transmitters based on the concept of interleaving delta modulation[J]. IEEE Journal of Solid-State Circuits, 2002, 37(12): 1748-1756. [26] Kikkert C. Digital techniques in delta modulation[J]. IEEE Transactions on Communication Technology, 1971, 19(4): 570-574. [27] O’neal J B. Delta modulation of data signals [J]. IEEE Transactions on Communications, 1974, 22(3): 334- 339. [28] Schindler H R. Linear, nonlinear and adaptive delta modulation[J]. IEEE Transactions on Communications, 1974, 22(11): 1807-1823. [29] Ziogas P D. The delta modulation technique in static PWM inverters[J]. IEEE Transactions on Industry Applications, 1981, 17(2): 199-204. [30] Garde P. High-efficiency low distortion parallel amplifier US, 4516080[P]. 1985-5-7. [31] Midya P. High efficiency power amplifier using combined linear and switching techniques with novel feedback system: US, 5905407[P]. 1999-05-18. [32] Mathe L, Kimball D, Arehambault J, et al. Apparatus and method for efficiently amplifying wideband envelope signals: US, 6300826B1[P]. 2001-10-09. [33] Kimball D F. Cuk style inverter with hysteretic control: US, 6710646B1[P]. 2004-03-23. [34] Morris B J, Gerald Fuller A T. High-efficiency amplifier, converter and methods: US, 0062526A1[P]. 2005-03-24. [35] Markowski P. Power supply providing ultra fast modulation of output voltage: US, 0024360A1[P]. 2007-02-01. [36] Hudspeth T, Kaplan D S, Rosen H A. Envelope amplifier: US, 4831334[P]. 1989-05-16. [37] Myers R G, Buer K V, Raab F H. Method and apparatus for high efficiency high dynamic range power amplification: US, 5929702[P]. 1999-07-27. [38] Shvarts E Y, Triolo A A, Ziesse N G. Variable output power supply: US, 0146791A1[P]. 2003-08- 07. [39] Wilson M P. High efficiency amplification: US, 0028271A1[P]. 2006-02-09. [40] Wilson M P. Transformer based voltage supply: US, 0279019A1[P]. 2007-12-06. [41] Rivas J M, Wahby R S, Shafran J S, et al. New architectures for radio-frequency DC-DC power conversion[J]. IEEE Transactions on Power Electronics, 2006, 21(2): 380-393. [42] Qiu Y, Yao K, Meng Y, et al. Control-loop bandwidth limitations for multiphase interleaving buck converters[C]. Proceedings the IEEE Applied Power Electronics Conference, 2004: 1322-1328. [43] Maksimovic D. A MOS gate drive with resonant transitions[C]. Proceedings of Power Electronics Specialist Conference, 1991: 527-532. [44] Wiegman H L N. A resonant pulse gate drive for high frequency application[C]. Proceedings the IEEE Applied Power Electronics Conference, 1992: 738-743. [45] Yao K, Lee F C. A novel resonant gate driver for high frequency synchronous Buck converters[J]. IEEE Transactions on Power Electronics, 2002, 17(2): 180- 186. [46] Yang Z, Ye S, Liu Y. A new dual channel resonant gate drive circuit for synchronous rectifiers[C]. Proceedings the IEEE Applied Power Electronics Conference, 2006: 756-762. [47] Eberle W, Liu Y, Sen P C. A new resonant gate-drive circuit with efficient energy recovery and low conduction loss[J]. IEEE Transactions on Power Electronics, 2008, 55(5): 2213-2221. [48] Weinberg S H. A novel lossless resonant MOSFET driver[C]. Proceedings of Power Electronics Specialist Conference, 1992: 1003-1010. [49] Diaz J, Perez M A, Linera F M, et al. A new lossless power MOSFET driver based on simple DC/DC converters[C]. Proc. IEEE PESC, 1995: 37-43. [50] Chen Y, Lee F C, Amoroso L, et al. A resonant MOSFET gate driver with efficient energy recovery[J]. IEEE Transactions on Power Electronics, 2004, 19(2): 470-477.