Analysis and Identification for Electromechanical Coupling and Shaft Stability of Doubly-Fed Induction Generator
Hao Zhenghang1, 2, Yu Yixin1
1. Key Laboratory Power System Simulation and Control of Ministry of Education Tianjin University Tianjin 300072 China 2. Guizhou University Guiyang 550003 China
Abstract:In order to investigate the decoupling conditions for doubly-fed induction generator (DFIG), the coefficient of feed forward compensation is defined for the control strategy of rotor current. Firstly, both conditions of electromechanical decoupling and a quantitative index of coupling are presented by deducing a linear dynamic model of the DFIG. Based on analysis of the linear model, it is shown that feed forward compensation can produce negative electrical damping and result in torsional oscillation of shaft. Then, an on-line identifying scheme for mechanical modes and electrical modes is developed, which employs subspace identification algorithm to extract the dominating modes under the natural operation conditions. Finally, a simulation case illustrates that the coefficient of feed forward compensation influences the degree of electromechanical decoupling as well as stability of shaft system. The case also demonstrates that the proposed on-line identification scheme of oscillation modes, featuring a satisfied precision, can develop a component of security monitor system for DFIG.
[1] 贺益康, 周鹏. 变速恒频双馈异步风力发电系统低电压穿越技术综述[J]. 电工技术学报, 2009, 24(9): 140-146. [2] Hee Sang Ko, Gi Gab Yoon, Nam Ho Kyung, et al. Modeling and control of DFIG-based variable-speed wind-turbine[J]. Electric Power Systems Research, 2008, 78(11): 1841-1849. [3] 李鹏程, 叶林. 基于EMTP/ATP的双馈式风力发电系统的模型与实现[J]. 电力系统自动化, 2009, 33(14): 93-97. [4] Francoise M, Bikashi P. Modal analysis of grid-connected doubly fed induction generators[J]. IEEE Trans. on Energy Conversion, 2007, 22(3): 728-736. [5] Pena R, Clare J C, Asher G M. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation[J]. IEE Proc., Electr. Power Appl., 1996, 143(3): 231-241. [6] Hansen A D, Sorensen P, Lov F, et al. Control of variable speed wind turbines with doubly-fed induction generators[J]. Wind Engineering, 2004, 28(4): 411-432. [7] Lopez J, Gub& #x000ed; a E, Olea E, et al. Ride through of wind turbines with doubly fed induction generator under symmetrical voltage dips[J]. IEEE Trans. on Industrial Electrinics, 2009, 56(10): 4246-4253. [8] Gautam D, Vittal V, Harbour T. Impact of increased penetration of DFIG-based wind turbine generators on transient and small signal stability of power systems[J]. IEEE Trans. on Power System, 2009, 24(3): 1426-1434. [9] 郭金东, 赵栋利, 林资旭, 等. 兆瓦级变速恒频风力发电机组控制系统[J]. 中国电机工程学报. 2007, 27(6):1-6. [10] 黄学良, 刘志仁, 祝瑞金, 等. 大容量变速恒频风电机组接入对电网运行的影响分析[J]. 电工技术学报, 2010, 25(4): 142-149. [11] 陈长征, 梁树民. 兆瓦级风力发电机故障诊断[J]. 沈阳工业大学学报, 2009, 31(3): 277-280. [12] 高景德, 王祥珩, 李发海. 交流电机及其系统的分析[M]. 2版. 北京:清华大学出版社, 2005. [13] Chondrogiannis S, Barnes M. Stability of doubly-fed induction generator under stator voltatge orientated vector control[J]. IET Renewable Power Generation, 2008, 2(3): 170-180. [14] 叶华, 刘玉田. 电力系统阻尼控制中的在线递推闭环子空间辨识[J]. 电工技术学报, 2008, 23(12): 144-151. [15] Verhaegen M. Identification of the deterministic part of MIMO state space models given in innovations from input-output data[J]. Automatica, 1994, 30(1): 61-74.