A Review and Prospect of Resilient Urban Power Network Research from a Social Security Perspective
Wan Haiyang1, Liu Wenxia1, Shi Qingxin1, Zhang Yiwei2, Wang Yuehan3, Zhang Shuai4
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. State Grid Tianjin Electric Power Research Institute Tianjin 300384 China; 3. State Grid Beijing Chaoyang Electric Power Company Beijing 100020 China; 4. Beijing FibrLink Communications Co. Ltd Beijing 100071 China
Abstract:The urban power network (UPN) is a vital infrastructure for the stable operation of large cities. Enhancing its risk prevention and control capabilities is vital for urban development. In recent years, frequent extreme disasters have increasingly triggered large-scale power outages, severely impacting urban economic activities and social security. As a result, the construction of a resilient UPN has become an urgent priority. However, incorporating social domains into resilience research introduces new challenges and opportunities. On the one hand, different social groups (including decision-makers, operators and consumers) have varying duties and interests. Their decisions and actions, shaped by differences in training, experience or resources, may be suboptimal or even slow down system recovery. On the other hand, consumers are the core stakeholders in any city. Public safety must guide resilient-UPN design, and the extent to which basic life needs are met should serve as a key resilience metric. As a result, a purely cyber-physical perspective of resilience cannot reveal how people behave in emergencies, nor can it quantify the minimum support that consumers need. It also fails to reveal the full range of emergency-resource flexibility needed for a truly resilient UPN. In this background, this paper reviews resilient-UPN research from a social-security perspective by addressing the following three main areas. First, the paper systematically summarizes the human and physical factors that affect UPN resilience. Human factors cover how decision-makers, operators and consumers take part in resilience measures. Their imperfect choices and misoperations can hinder recovery, while their flexible demand responses may accelerate it. Physical factors arise from the UPN's close coupling with urban lifeline systems (ULS)—including gas, heat, water, communications, transportation and public services—where mutual energy support can enhance resilience, whereas cascading failures may compromise it. Next, the paper surveys state-of-the-art research on resilience assessment frameworks and enhancement methods that integrate social dimensions. For resilience assessment, existing studies focus on developing social-domain metrics (such as water-use security, thermal comfort, psychological panic level, and individual well-being), and on simulating system operational states. For resilience enhancement, the paper provides a comprehensive review of the challenges each social group faces when participating in resilience efforts, particularly under uncertainties. In addition, it compares and analyzes the specific approaches employed by different groups, including model-based and data-driven methods. Finally, the paper identifies key challenges in constructing a resilient UPN under social-security standards. These include defining resilience metrics that capture impacts on public safety and basic needs; rapidly evaluating ULS operational states amid complex interdependencies; and determining the true extent of emergency-resource flexibility by involving the behavioral characteristics of heterogeneous social groups. Meanwhile, this paper outlines future research directions from three perspectives: the development of resilience accessment metrics, dimensionality reduction of coupled networks, and resilience enhancement strategies.
万海洋, 刘文霞, 石庆鑫, 张艺伟, 王月汉, 张帅. 社会安全视角下的城市韧性电网研究综述及展望[J]. 电工技术学报, 2026, 41(1): 82-110.
Wan Haiyang, Liu Wenxia, Shi Qingxin, Zhang Yiwei, Wang Yuehan, Zhang Shuai. A Review and Prospect of Resilient Urban Power Network Research from a Social Security Perspective. Transactions of China Electrotechnical Society, 2026, 41(1): 82-110.
[1] 孙建平. 上海城市运行安全发展报告(2019—2020)[M]. 上海: 同济大学出版社, 2021. [2] 何正友, 李波, 廖凯, 等. 新形态城市电网保护与控制关键技术[J]. 中国电机工程学报, 2020, 40(19): 6193-6207. He Zhengyou, Li Bo, Liao Kai, et al.Key technologies for protection and control of novel urban power grids[J]. Proceedings of the CSEE, 2020, 40(19): 6193-6207. [3] 严奕陆, 刘文霞, 石庆鑫, 等. 基于电-水跨层耦合模型的城市电网脆弱性评估[J]. 电工技术学报, 2024, 39(16): 5075-5090. Yan Yilu, Liu Wenxia, Shi Qingxin, et al.Vulnerability assessment of urban power grid based on electricity-water cross-layer coupling model[J]. Transactions of China Electrotechnical Society, 2024, 39(16): 5075-5090. [4] Liu Gengming, Liu Wenxia, Shi Qingxin. Modeling and vulnerability analysis of multi-layer urban electric-transportation interdependent networks under extreme events[J/OL]. CSEE Journal of Power and Energy Systems, 2023: 1-12[2024-11-26]. doi:10.17775/CSEEJPES.2022.07440. [5] 段常贵. 燃气输配[M]. 5版. 北京: 中国建筑工业出版社, 2015. [6] 张宁, 杨经纬, 王毅, 等. 面向泛在电力物联网的5G通信: 技术原理与典型应用[J]. 中国电机工程学报, 2019, 39(14): 4015-4025. Zhang Ning, Yang Jingwei, Wang Yi, et al.5G communication for the ubiquitous Internet of Things in electricity: technical principles and typical applications[J]. Proceedings of the CSEE, 2019, 39(14): 4015-4025. [7] Yang Yongsheng, Liu Huan, Mostafavi A, et al.Review on modeling the societal impact of infrastruc- ture disruptions due to disasters[J]. Reliability Engineering & System Safety, 2025, 257: 110879. [8] 曹辰, 王增平. 极端天气对新型电力系统的影响及应对措施思考[J]. 南方能源建设, 2025, 12(1): 43-57. Cao Chen, Wang Zengping.Reflections on the impact of extreme weather on new power systems and countermeasures[J]. Southern Energy Construction, 2025, 12(1): 43-57. [9] 万海洋, 刘文霞, 石庆鑫, 等. 城市电网灾后应急资源的集中匹配-分布调度策略[J]. 电工技术学报, 2024, 39(23): 7463-7480. Wan Haiyang, Liu Wenxia, Shi Qingxin, et al.A post-disaster centralized matching and decentralized dispatch strategy for emergency resources in urban power network[J]. Transactions of China Electro- technical Society, 2024, 39(23): 7463-7480. [10] 住房和城乡建设部和国家发展改革委. “十四五” 全国城市基础设施建设规划[EB/OL]. (2022-07-07) [2024-09-30]. https://www.gov.cn/zhengce/zhengceku/ 2022-07/31/5703690/files/d4ebd608827e41138701d06 fe6133cdb.pdf. [11] 高海翔, 陈颖, 黄少伟, 等. 配电网韧性及其相关研究进展[J]. 电力系统自动化, 2015, 39(23): 1-8. Gao Haixiang, Chen Ying, Huang Shaowei, et al.Distribution systems resilience: an overview of research progress[J]. Automation of Electric Power Systems, 2015, 39(23): 1-8. [12] 刘念, 余星火, 王剑辉, 等. 泛在物联的配用电优化运行: 信息物理社会系统的视角[J]. 电力系统自动化, 2020, 44(1): 1-12. Liu Nian, Yu Xinghuo, Wang Jianhui, et al.Optimal operation of power distribution and consumption system based on ubiquitous Internet of Things: a cyber-physical-social system perspective[J]. Automation of Electric Power Systems, 2020, 44(1): 1-12. [13] 陈维江, 靳晓凌, 吴鸣, 等. 双碳目标下我国配电网形态快速演进的思考[J]. 中国电机工程学报, 2024, 44(17): 6811-6818. Chen Weijiang, Jin Xiaoling, Wu Ming, et al.Thinking on the rapid evolution of distribution network form under the carbon peaking and carbon neutrality goals[J]. Proceedings of the CSEE, 2024, 44(17): 6811-6818. [14] 杨荫凯. 推进以人为核心的新型城镇化[EB/OL]. (2023-06-07)[2024-09-30]. https://www.ndrc.gov.cn/x wdt/ztzl/NEW_srxxgcjjpjjsx/jjsxyjqk/tszl/xxgcesdjs/dt/202306/t20230607_1363498.html. [15] Magoua J J, Li Nan.The human factor in the disaster resilience modeling of critical infrastructure systems[J]. Reliability Engineering & System Safety, 2023, 232: 109073. [16] 阳富强, 吴超, 汪发松, 等. 1998—2008年人因可靠性研究进展[J]. 科技导报, 2009, 27(8): 87-94. Yang Fuqiang, Wu Chao, Wang Fasong, et al.Review of studies on human reliability researches during 1998 to 2008[J]. Science & Technology Review, 2009, 27(8): 87-94. [17] Buzan B.People, States and Fear: The National Security Problem in International Relations[M]. Chapel Hill, NC: University of North Carolina Press, 1983. [18] 刘跃进. 国家安全体系中的社会安全问题[J]. 中央社会主义学院学报, 2012(2): 95-99. Liu Yuejin.Social security issue in the national security system[J]. Journal of the Central Institute of Socialism, 2012(2): 95-99. [19] 张维平. 社会学视野中的公共安全与应急机制[J]. 中国公共安全(学术版), 2007(2): 5-12. [20] 国务院灾害调查组. 河南郑州“720”特大暴雨灾害调查报告[R/OL]. 北京: 中国人民共和国应急管理部, 2022. (2022-01-21)[2024-09-30]. https://www.mem.gov.cn/gk/sgcc/tbzdsgdcbg/202201/P020220121639049697767.pdf. [21] Andersson G, Donalek P, Farmer R, et al.Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance[J]. IEEE Transactions on Power Systems, 2005, 20(4): 1922-1928. [22] Huang Can, Hu Qinran, Sang Linwei, et al.A review of public safety power shutoffs (PSPS) for wildfire mitigation: policies, practices, models and data sources[J]. IEEE Transactions on Energy Markets, Policy and Regulation, 2023, 1(3): 187-197. [23] 张可颖, 吴新桥, 赵继光, 等. 基于特征工程和集成学习与模型融合的输电走廊实时山火风险评估模型[J]. 电网技术, 2023, 47(11): 4727-4738. Zhang Keying, Wu Xinqiao, Zhao Jiguang, et al.Real-time wildfire risk assessment model for transmission corridors based on feature engineering and boosting integrated learning model[J]. Power System Technology, 2023, 47(11): 4727-4738. [24] 程鹏, 盖源源. 买不起燃料, 全国每天停电13小时,公共交通陷入瘫痪?股市停牌这个国家爆发抗议[EB/OL]. (2022-04-01)[2024-09-30]. https://finance.ifeng.com/c/8ErWfeGuVeB. [25] 四川省人民政府办公厅. 关于加强高温天气防范应对工作的紧急通知[EB/OL]. (2022-07-08)[2024-09-30]. https://www.sc.gov.cn/10462/zfwjts/2022/7/8/44c7d16365f44ba787dc38e847a44108.shtml. [26] 国家发展和改革委员会. 关于印发《有序用电管理办法》的通知[EB/OL]. (2011-04-28)[2024-09-30]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/201104/t20110428_964761.html. [27] 郄聃, 万海洋, 张桐菲, 等. 计及故障信息和需求不确定的应急物资灾前预布局与灾后调度[J]. 电力系统自动化, 2024, 48(13): 120-129. Qie Dan, Wan Haiyang, Zhang Tongfei, et al.Pre-disaster pre-layout and post-disaster scheduling of emergency materials considering uncertainties of fault information and demand[J]. Automation of Electric Power Systems, 2024, 48(13): 120-129. [28] 杜洁, 张海锋, 王佳蕊, 等. 计及用户热耐受度的区域综合能源系统韧性评估及提升研究[J]. 全球能源互联网, 2024, 7(1): 3-13. Du Jie, Zhang Haifeng, Wang Jiarui, et al.Resilience assessment and enhancement oriented human heat tolerance of regional integrated energy systems[J]. Journal of Global Energy Interconnection, 2024, 7(1): 3-13. [29] Dong Shangjia, Esmalian A, Farahmand H, et al.An integrated physical-social analysis of disrupted access to critical facilities and community service-loss tolerance in urban flooding[J]. Computers, Environ-ment and Urban Systems, 2020, 80: 101443. [30] Yawson D O, Adu M O, Armah, F A, et al.A needs- based approach for exploring vulnerability and response to disaster risk in rural communities in low income countries[J]. Australasian Journal of Disaster and Trauma Studies, 2015, 19: 27-36. [31] 杜保健, 冯健, 关鸿鹏, 等. 城市燃气远程调控系统及安全调控策略[J]. 煤气与热力, 2017, 37(5): 22-26. Du Baojian, Feng Jian, Guan Hongpeng, et al.City gas remote control system and safe control strategy[J]. Gas & Heat, 2017, 37(5): 22-26. [32] 北京市城市管理委员会. 国网北京市电力公司简介[EB/OL]. (2023-10-26)[2024-09-30]. https://csglw.beijing.gov.cn/sy/syztzl/ggqygk/lbxx/202310/t20231026_3287536.html. [33] 刘学来, 赵淑敏, 张金和. 城市供热工程[M]. 北京: 中国电力出版社, 2009. [34] 张楠. 3610座居民供热锅炉房开始供热家中不能低于18℃今日零时全市达标供暖[N]. 北京日报, 2023-11-07(5). [35] 刘遂庆. 给水排水管网系统[M]. 4版. 北京: 中国建筑工业出版社, 2021. [36] Shi Qingxin, Yan Yilu, Liu Wenxia, et al.Resilience assessment of urban power network considering multi-stage electrical-water fault propagation[J]. IEEE Transactions on Power Systems, 2025, 40(4): 2819-2831. [37] Maupin M A, Kenny J F, Hutson S S, et al.Estimated use of water in the United States in 2010[R]. Reston, VA: U. S. Geological Survey, 2014. [38] Wan Haiyang, Liu Wenxia, Shi Qingxin, et al.Real- time service restoration of coupled power-water systems considering the spatio-temporal cascading failure[J]. IEEE Transactions on Smart Grid, 2026, 17(1): 178-192. [39] 刘达夫, 钟剑, 杨祺铭, 等. 基于V2G与应急通信的配电网信息物理协同快速恢复方法[J]. 电力系统自动化, 2024, 48(7): 147-158. Liu Dafu, Zhong Jian, Yang Qiming, et al.Fast recovery method for distribution network through cyber-physical collaboration based on vehicle to grid and emergency communication[J]. Automation of Electric Power Systems, 2024, 48(7): 147-158. [40] 张艺伟, 刘文霞, 刘耕铭, 等. 考虑拓扑相关和双重耦合的电力信息物理系统建模与脆弱性分析[J]. 中国电机工程学报, 2021, 41(16): 5486-5500. Zhang Yiwei, Liu Wenxia, Liu Gengming, et al.Modeling and vulnerability analysis of electric cyber physical system considering topological correlation and double coupling[J]. Proceedings of the CSEE, 2021, 41(16): 5486-5500. [41] 张昊辰, 陈晨, 钟剑, 等. 计及抢修人员调度的配电网信息-物理协同恢复策略[J]. 电力系统自动化, 2025, 49(8): 159-168. Zhang Haochen, Chen Chen, Zhong Jian, et al.Cyber- physical collaborative restoration strategy for distribu- tion networks considering repair crew dispatching[J]. Automation of Electric Power Systems, 2025, 49(8): 159-168. [42] 刘瑞环, 陈晨, 叶志刚, 等. 基于无人机应急通信的配电网灾后信息物理协同恢复策略[J]. 电网技术, 2023, 47(3): 1218-1230. Liu Ruihuan, Chen Chen, Ye Zhigang, et al.Coopera- tive cyber-physical distribution system restoration with UAV-based emergency communication UAV after disasters[J]. Power System Technology, 2023, 47(3): 1218-1230. [43] 徐潇源, 李佳琪, 王晗, 等. 城市电力-交通系统韧性研究综述及展望[J]. 电力系统自动化, 2024, 48(23): 1-15. Xu Xiaoyuan, Li Jiaqi, Wang Han, et al.Review and prospect of research on urban power-transportation system resilience[J]. Automation of Electric Power Systems, 2024, 48(23): 1-15. [44] Liu Gengming, Cheng Rui, Liu Wenxia, et al.Enhancing resilience of urban electric-road-metro interdependent network considering electric bus scheduling[J]. IEEE Transactions on Sustainable Energy, 2025, 16(1): 654-672. [45] 杨天宇, 郭庆来, 盛裕杰, 等. 系统互联视角下的城域电力-交通融合网络协同[J]. 电力系统自动化, 2020, 44(11): 1-9. Yang Tianyu, Guo Qinglai, Sheng Yujie, et al.Coordination of urban integrated electric power and traffic network from perspective of system inter- connection[J]. Automation of Electric Power Systems, 2020, 44(11): 1-9. [46] 于群, 英启昊, 曹娜, 等. 基于属性数学理论的电网停电事故网络舆情风险评估[J]. 电网技术, 2025, 49(2): 719-726. Yu Qun, Ying Qihao, Cao Na, et al.Risk assessment of online public opinion on power grid outage incidents based on attribute mathematical theory[J]. Power System Technology, 2025, 49(2): 719-726. [47] Panteli M, Mancarella P, Trakas D N, et al.Metrics and quantification of operational and infrastructure resilience in power systems[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4732-4742. [48] 彭寒梅, 王小豪, 魏宁, 等. 提升配电网弹性的微网差异化恢复运行方法[J]. 电网技术, 2019, 43(7): 2328-2335. Peng Hanmei, Wang Xiaohao, Wei Ning, et al.Microgrid differentiated recovery operation for enhancing distribution system resilience[J]. Power System Technology, 2019, 43(7): 2328-2335. [49] 刘影, 王涛, 顾雪平. 基于边韧性度的电力系统关键线路筛选[J]. 电力系统保护与控制, 2012, 40(6): 92-96, 103. Liu Ying, Wang Tao, Gu Xueping.Screening of critical lines in power systems based on the edge tenacity index[J]. Power System Protection and Control, 2012, 40(6): 92-96, 103. [50] 陶然, 赵冬梅, 徐辰宇, 等. 考虑电-气-热-交通相互依存的城市能源系统韧性评估与提升方法[J]. 电工技术学报, 2023, 38(22): 6133-6149. Tao Ran, Zhao Dongmei, Xu Chenyu, et al.Resilience assessment and enhancement methods for urban energy system considering electricity-gas-heat- transport inter-dependency[J]. Transactions of China Electrotechnical Society, 2023, 38(22): 6133-6149. [51] 李雪, 孙霆锴, 侯恺, 等. 地震灾害下海岛综合能源系统韧性评估方法研究[J]. 中国电机工程学报, 2020, 40(17): 5476-5493. Li Xue, Sun Tingkai, Hou Kai, et al.Evaluating resilience of island integrated energy systems with earthquake[J]. Proceedings of the CSEE, 2020, 40(17): 5476-5493. [52] 王守相, 王林, 王洪坤, 等. 地震灾害下提升恢复力的配电网优化恢复策略[J]. 电力系统及其自动化学报, 2020, 32(6): 28-35. Wang Shouxiang, Wang Lin, Wang Hongkun, et al.Optimal recovery strategy for distribution network to improve its resilience under earthquake disasters[J]. Proceedings of the CSU-EPSA, 2020, 32(6): 28-35. [53] 孙为民, 孙华东, 何剑, 等. 面向严重自然灾害的电力系统韧性评估技术综述[J]. 电网技术, 2024, 48(1): 129-139. Sun Weimin, Sun Huadong, He Jian, et al.Review of power system resilience assessment techniques for severe natural disasters[J]. Power System Technology, 2024, 48(1): 129-139. [54] Roege P E, Collier Z A, Mancillas J, et al.Metrics for energy resilience[J]. Energy Policy, 2014, 72: 249-256. [55] Siskos E, Burgherr P.Multicriteria decision support for the evaluation of electricity supply resilience: exploration of interacting criteria[J]. European Journal of Operational Research, 2022, 298(2): 611-626. [56] 青涛, 刘朝鹏, 张力, 等. SPAR-H方法在数字化核电厂人因可靠性分析中的应用研究[J]. 核动力工程, 2021, 42(3): 126-131. Qing Tao, Liu Zhaopeng, Zhang Li, et al.Application of SPAR-H method in human reliability analysis of digital nuclear power plants[J]. Nuclear Power Engi- neering, 2021, 42(3): 126-131. [57] 陆海波, 王媚, 郭创新, 等. 基于CREAM的电网人为可靠性定量分析方法[J]. 电力系统保护与控制, 2013, 41(5): 37-42. Lu Haibo, Wang Mei, Guo Chuangxin, et al.A quantitative method for human reliability in power system based on CREAM[J]. Power System Protec- tion and Control, 2013, 41(5): 37-42. [58] 杨丽君, 张晶, 程慧琳, 等. 基于最优效用的配电网多故障抢修任务分配策略[J]. 电工技术学报, 2014, 29(6): 263-270, 289. Yang Lijun, Zhang Jing, Cheng Huilin, et al.A task allocation strategy of multi-fault rush repair for distribution network based on optimum utility[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 263-270, 289. [59] 卢志刚, 王克胜. 基于多代理方法的配电网故障应急抢修调度[J]. 电网技术, 2013, 37(1): 137-143. Lu Zhigang, Wang Kesheng.Multi-agent based rush repair scheduling for distribution networks[J]. Power System Technology, 2013, 37(1): 137-143. [60] Stankovic A M, Tomsovic K L, De Caro F, et al.Methods for analysis and quantification of power system resilience[J]. IEEE Transactions on Power Systems, 2023, 38(5): 4774-4787. [61] Ye Zhigang, Wu Kai, Zhang Zihang, et al.A value-of-service based model for resilient distribution system restoration with microgrids[C]//2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Chengdu, China, 2019: 1979-1983. [62] Najafi J, Peiravi A, Guerrero J M.Power distribution system improvement planning under hurricanes based on a new resilience index[J]. Sustainable Cities and Society, 2018, 39: 592-604. [63] Li Zhenlong, Li Peng, Xia Jing, et al.Cyber-physical- social system scheduling for multi-energy microgrids with distribution network coordination[J]. International Journal of Electrical Power & Energy Systems, 2023, 149: 109054. [64] Wan Haiyang, Liu Wenxia, Zhang Shuai, et al.Resilience-oriented load restoration method for power-gas-water systems considering public safety impact[J]. IET Generation, Transmission & Distribu- tion, 2024, 18(21): 3350-3364. [65] Valinejad J, Mili L.Cyber-physical-social model of community resilience by considering critical infras- tructure interdependencies[J]. IEEE Internet of Things Journal, 2023, 10(19): 17530-17543. [66] Valinejad J, Mili L.Community resilience optimiza- tion subject to power flow constraints in cyber- physical-social systems[J]. IEEE Systems Journal, 2023, 17(2): 2904-2915. [67] 郭红霞, 陈凌轩, 张启, 等. 电力电量平衡视角下新型电力系统极端场景研究及应对综述[J]. 电网技术, 2024, 48(10): 3975-3994. Guo Hongxia, Chen Lingxuan, Zhang Qi, et al.Research and response to extreme scenarios in new power system: a review from perspective of electricity and power balance[J]. Power System Technology, 2024, 48(10): 3975-3994. [68] 王金岩, 丁坤, 孙亚璐, 等. 强沙尘暴下新能源基地的韧性评估及其提升方法[J]. 电网技术, 2025, 49(1): 124-135. Wang Jinyan, Ding Kun, Sun Yalu, et al.Research on resilience assessment and improvement methods of new energy bases under strong sandstorm[J]. Power System Technology, 2025, 49(1): 124-135. [69] 殷浩洋, 刘东. 山火灾害下电网安全形态的事件驱动模型与动态推演方法[J]. 中国电机工程学报, 2024, 44(20): 7911-7925. Yin Haoyang, Liu Dong.Event-driven model and dynamic deduction method of security morphological of power system under wildfires[J]. Proceedings of the CSEE, 2024, 44(20): 7911-7925. [70] Wu Yingjun, Chen Xuejie, Chen Runrun, et al.Resilience-enhancing model considering weather- sensitive constraints[J]. IEEE Transactions on Power Delivery, 2024, 39(2): 1209-1221. [71] 王玮, 赵家悦, 郭创新, 等. 考虑故障连锁的多灾害输电网弹性评估及关键弹性提升元件辨识[J]. 中国电机工程学报, 2022, 42(1): 127-140. Wang Wei, Zhao Jiayue, Guo Chuangxin, et al.Assessing resilience of transmission network and identifying key elements to enhance resilience considering failure chain under multiple disasters[J]. Proceedings of the CSEE, 2022, 42(1): 127-140. [72] 高红均, 郭明浩, 刘俊勇, 等. 从四川高温干旱限电事件看新型电力系统保供挑战与应对展望[J]. 中国电机工程学报, 2023, 43(12): 4517-4538. Gao Hongjun, Guo Minghao, Liu Junyong, et al.Power supply challenges and prospects in new power system from Sichuan electricity curtailment events caused by high-temperature drought weather[J]. Proceedings of the CSEE, 2023, 43(12): 4517-4538. [73] 高红均, 尚梦琪, 贺帅佳, 等. 保障极端高温事件下负荷可靠供应的楼宇综合能源规划[J]. 中国电机工程学报, 2024, 44(19): 7636-7648. Gao Hongjun, Shang Mengqi, He Shuaijia, et al.Integrated energy planning for buildings to ensure reliable load supply during extreme heat events[J]. Proceedings of the CSEE, 2024, 44(19): 7636-7648. [74] 梁振锋, 闫俊杰, 李江锋, 等. 极端暴雨灾害下城市配电网风险评估方法[J]. 电网技术, 2023, 47(10): 4180-4190. Liang Zhenfeng, Yan Junjie, Li Jiangfeng, et al.Risk assessment of urban distribution network under extreme rainstorm disasters[J]. Power System Techno- logy, 2023, 47(10): 4180-4190. [75] 荣俊杰, 周明, 元博, 等. 台风天气考虑故障演化的电力系统韧性评估方法[J]. 电网技术, 2024, 48(3): 1114-1131. Rong Junjie, Zhou Ming, Yuan Bo, et al.Resilience assessment method on power systems under typhoon disaster considering failure evolution process[J]. Power System Technology, 2024, 48(3): 1114-1131. [76] 沈政委, 孙华东, 仲悟之, 等. 基于关键事件的高比例新能源电力系统故障连锁演化规律分析[J]. 电力系统自动化, 2022, 46(24): 57-65. Shen Zhengwei, Sun Huadong, Zhong Wuzhi, et al.Key event based analysis of evolution law of cascading failures in power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2022, 46(24): 57-65. [77] 刘文霞, 刘佳怡, 万海洋, 等. 面向多类型极端天气的新型电力系统规划方案全场景风险评估[J]. 电力系统自动化, 2025, 49(4): 65-78. Liu Wenxia, Liu Jiayi, Wan Haiyang, et al.Full- scenario risk assessment of new power system planning scheme for multiple types of extreme weather[J]. Automation of Electric Power Systems, 2025, 49(4): 65-78. [78] 雍维桢, 王建学, 薛霖, 等. 面向区域能源互联网的水-能协同优化: 综述与展望[J]. 电力系统自动化, 2023, 47(11): 185-199. Yong Weizhen, Wang Jianxue, Xue Lin, et al.Water-energy collaborative optimization for regional energy Internet: review and prospect[J]. Automation of Electric Power Systems, 2023, 47(11): 185-199. [79] Jiang Qiangqiang, Cai Baoping, Zhang Yanping, et al.Resilience assessment methodology of natural gas network system under random leakage[J]. Reliability Engineering & System Safety, 2023, 234: 109134. [80] Qiu Jing, Yang Hongming, Dong Zhaoyang, et al.A linear programming approach to expansion co- planning in gas and electricity markets[J]. IEEE Transactions on Power Systems, 2016, 31(5): 3594-3606. [81] 李振坤, 张天翼, 邓莉荣, 等. 基于模型-数据混合驱动的区域能源互联网韧性在线评估[J]. 电网技术, 2024, 48(10): 4060-4076. Li Zhenkun, Zhang Tianyi, Deng Lirong, et al.A hybrid model-data-driven online resilience assessment method for the energy Internet[J]. Power System Technology, 2024, 48(10): 4060-4076. [82] 刘文霞, 黄钰辰, 张艺伟. 多主体分散决策能源互联系统韧性分析[J]. 华北电力大学学报(自然科学版), 2021, 48(3): 1-13. Liu Wenxia, Huang Yuchen, Zhang Yiwei.Resilience assessment of multi-agent and decentralized decision- making energy interconnection systems[J]. Journal of North China Electric Power University (Natural Science Edition), 2021, 48(3): 1-13. [83] Chu Zheng, Le T A, Nguyen H X, et al.A Stackelberg-game approach for disaster-recovery communications utilizing cooperative D2D[J]. IEEE Access, 2018, 6: 10733-10742. [84] Nikoobakht A, Mokarram M J, Moghaddam E M.Enhancing integrated energy systems’ resilience against windstorms through a decentralized coopera-tion model[J]. Electric Power Systems Research, 2023, 225: 109801. [85] Mishra D K, Wang Jiatong, Li Li, et al.Resilience- driven scheme in multiple microgrids with secure transactive energy system framework[J]. IEEE Trans- actions on Industry Applications, 2024, 60(2): 2277-2289. [86] Wang Yi, Qiu Dawei, Sun Xiaotian, et al.Coordina- ting multi-energy microgrids for integrated energy system resilience: a multi-task learning approach[J]. IEEE Transactions on Sustainable Energy, 2024, 15(2): 920-937. [87] Wang Weiqiao, Yang Kai, Yang Lixing, et al.Two-stage distributionally robust programming based on worst-case mean-CVaR criterion and application to disaster relief management[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 149: 102332. [88] Akbar M S, Aldrich D P.Social capital’s role in recovery: evidence from communities affected by the 2010 Pakistan floods[J]. Disasters, 2018, 42(3): 475-497. [89] 罗佳怡, 邢海军, 全文斌, 等. 极端高温下新型电力系统韧性评估及差异化规划[J]. 电力系统自动化, 2025, 49(3): 135-144. Luo Jiayi, Xing Haijun, Quan Wenbin, et al.Resilience assessment and differentiated planning of new power systems under extreme high tempera- tures[J]. Automation of Electric Power Systems, 2025, 49(3): 135-144. [90] Wan Haiyang, Liu Wenxia, Shi Qingxin, et al.Multi-time-step rolling optimization strategy for post-disaster emergency recovery in distribution system based on model predictive control[J]. CSEE Journal of Power and Energy Systems, 2025: 243-254. [91] Sun Xiaotian, Xie Haipeng, Bie Zhaohong, et al.Restoration of high-renewable-penetrated distribution systems considering uncertain repair workloads[J]. CSEE Journal of Power and Energy Systems, 2025, 11(1): 150-162. [92] 李娜. 基于鲁棒规划模型的电力应急物资库网络设计研究[D]. 北京: 华北电力大学, 2019. Li Na.Research on network design of electric power emergency material warehouse based on robust programming model[D]. Beijing: North China Electric Power University, 2019. [93] 韩建沛, 席嫣娜, 刘念, 等. 面向重大社会事件的电力应急资源两阶段规划方法[J]. 电力自动化设备, 2023, 43(3): 188-195, 224. Han Jianpei, Xi Yanna, Liu Nian, et al.Two-stage planning method of power emergency resources for major social events[J]. Electric Power Automation Equipment, 2023, 43(3): 188-195, 224. [94] Wang Shunqi, Ding Tao, Shahidehpour M, et al.Optimal capacity planning for manufacturing, transportation, and replacement of quickly-detachable transformer modules in substations of resilient distribution networks[J]. IEEE Transactions on Industry Applications, 2024, 60(2): 2012-2024. [95] Arif A, Wang Zhaoyu, Wang Jianhui, et al.Power distribution system outage management with co- optimization of repairs, reconfiguration, and DG dispatch[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 4109-4118. [96] Chen Bo, Ye Zhigang, Chen Chen, et al.Toward a synthetic model for distribution system restoration and crew dispatch[J]. IEEE Transactions on Power Systems, 2019, 34(3): 2228-2239. [97] Xu Yin, Wang Ying, He Jinghan, et al.Resilience- oriented distribution system restoration considering mobile emergency resource dispatch in transportation system[J]. IEEE Access, 2019, 7: 73899-73912. [98] 万海洋, 刘文霞, 石庆鑫, 等. 计及交通流量动态变化的配电网灾后修复多时间断面优化策略[J]. 电力系统自动化, 2022, 46(12): 119-129. Wan Haiyang, Liu Wenxia, Shi Qingxin, et al.Multiple-time-section optimization strategy for post- disaster recovery of distribution network considering dynamic changes of traffic flow[J]. Automation of Electric Power Systems, 2022, 46(12): 119-129. [99] 郁琛, 李尚轩, 谢云云, 等. 考虑交通网与配电网信息融合的台风后配电网抢修策略优化[J]. 电力系统自动化, 2022, 46(4): 15-24. Yu Chen, Li Shangxuan, Xie Yunyun, et al.Optimization of post-typhoon rush repair strategy for distribution network considering information integra- tion of traffic network and distribution network[J]. Automation of Electric Power Systems, 2022, 46(4): 15-24. [100] Arif A, Ma Shanshan, Wang Zhaoyu, et al.Optimi- zing service restoration in distribution systems with uncertain repair time and demand[J]. IEEE Trans- actions on Power Systems, 2018, 33(6): 6828-6838. [101] Shi Qingxin, Li Fangxing, Dong Jin, et al.Co- optimization of repairs and dynamic network reconfiguration for improved distribution system resilience[J]. Applied Energy, 2022, 318: 119245. [102] Gao Haixiang, Chen Ying, Mei Shengwei, et al.Resilience-oriented pre-hurricane resource allocation in distribution systems considering electric buses[J]. Proceedings of the IEEE, 2017, 105(7): 1214-1233. [103] Shi Qingxin, Wan Haiyang, Liu Wenxia, et al.Preventive allocation and post-disaster cooperative dispatch of emergency mobile resources for improved distribution system resilience[J]. International Journal of Electrical Power & Energy Systems, 2023, 152: 109238. [104] Wang Y, Rousis A O, Strbac G.Resilience-driven optimal sizing and pre-positioning of mobile energy storage systems in decentralized networked micro- grids[J]. Applied Energy, 2022, 305: 117921. [105] 王月汉, 刘文霞, 姚齐, 等. 面向配电网韧性提升的移动储能预布局与动态调度策略[J]. 电力系统自动化, 2022, 46(15): 37-45. Wang Yuehan, Liu Wenxia, Yao Qi, et al.Pre-layout and dynamic scheduling strategy of mobile energy storage for resilience enhancement of distribution network[J]. Automation of Electric Power Systems, 2022, 46(15): 37-45. [106] 张亚超, 谢仕炜. 面向配电网弹性提升的多时间尺度恢复策略协调优化框架[J]. 电力系统自动化, 2021, 45(18): 28-34. Zhang Yachao, Xie Shiwei.Coordinated optimization framework of multi-timescale restoration strategies for resilience enhancement of distribution networks[J]. Automation of Electric Power Systems, 2021, 45(18): 28-34. [107] Ebadat Parast M, Mousavian M, Nazari M H, et al.Microgrids and distribution system resilience assess- ment: a multi-objective robust-stochastic optimization approach considering social behavior using a deep learning modeling[J]. Sustainable Cities and Society, 2023, 97: 104686. [108] 朱晓荣, 司羽. 考虑物理-信息-交通网耦合的配电网多时段动态供电恢复策略[J]. 电工技术学报, 2023, 38(12): 3306-3320. Zhu Xiaorong, Si Yu.Multi-period dynamic power supply restoration strategy considering physical- cyber-traffic network coupling[J]. Transactions of China Electrotechnical Society, 2023, 38(12): 3306-3320. [109] 杨珺, 孔文康, 孙秋野. 智能算法在含分布式电源配电网故障恢复的应用综述[J]. 控制与决策, 2019, 34(9): 1809-1818. Yang Jun, Kong Wenkang, Sun Qiuye.Application of intelligent algorithms to service restoration of distribution network with distributed generations[J]. Control and Decision, 2019, 34(9): 1809-1818. [110] 韩佳英. 含直流微网的配电网负荷恢复策略研究[D]. 北京: 北京交通大学, 2020. Han Jiaying.Research on load recovery strategy of distribution network with DC microgrid[D]. Beijing: Beijing Jiaotong University, 2020. [111] 黄武靖, 司方远, 张宁, 等. 面向韧性的城市能源系统安全规则提取及优化运行[J]. 电力系统自动化, 2023, 47(12): 1-8. Huang Wujing, Si Fangyuan, Zhang Ning, et al.Resilience-oriented security rule extraction and optimal operation for urban energy system[J]. Auto- mation of Electric Power Systems, 2023, 47(12): 1-8. [112] 徐文文. 基于蒙特卡洛树搜索算法的大停电后机组恢复次序决策研究[D]. 南宁: 广西大学, 2021. Xu Wenwen.Research on the decision making of the startup sequece of generators after blackout based on Monte Carlo tree search algorithm[D]. Nanning: Guangxi University, 2021. [113] Zhao Jin, Li Fangxing, Chen Xi, et al.Deep learning based model-free robust load restoration to enhance bulk system resilience with wind power penetration[J]. IEEE Transactions on Power Systems, 2022, 37(3): 1969-1978. [114] 邓荣楠, 宋梦, 高赐威, 等. 考虑用户负荷决策依赖特性的配电网灾后恢复方法对比分析[J]. 电工技术学报, 2024, 39(23): 7447-7462. Deng Rongnan, Song Meng, Gao Ciwei, et al.Comparative analysis of distribution system load restoration considering decision-dependent behaviors of customers[J]. Transactions of China Electro- technical Society, 2024, 39(23): 7447-7462. [115] 蔡田田, 姚浩, 杨英杰, 等. 基于云-边协同的配电网快速供电恢复智能决策方法[J]. 电力系统保护与控制, 2023, 51(19): 94-103. Cai Tiantian, Yao Hao, Yang Yingjie, et al.Cloud- edge collaboration-based supply restoration intelligent decision-making method[J]. Power System Protection and Control, 2023, 51(19): 94-103. [116] Huang Weixiang, Zhang Wei, Chen Qianyi, et al.Prediction algorithm for power outage areas of affected customers based on CNN-LSTM[J]. IEEE Access, 2024, 12: 15007-15015. [117] 张沛, 陈玉鑫, 王光华, 等. 基于图强化学习的配电网故障恢复决策[J]. 电力系统自动化, 2024, 48(2): 151-158. Zhang Pei, Chen Yuxin, Wang Guanghua, et al.Fault recovery decision of distribution network based on graph reinforcement learning[J]. Automation of Electric Power Systems, 2024, 48(2): 151-158. [118] 范邦稷, 刘兴华, 丁涛, 等. 基于图注意网络与深度确定性策略梯度的三相主动配电网供电恢复方法[J]. 中国电机工程学报, 2023, 43(21): 8193-8206. Fan Bangji, Liu Xinghua, Ding Tao, et al.A GAT-DDPG based approach for three-phase active distribution system restoration[J]. Proceedings of the CSEE, 2023, 43(21): 8193-8206. [119] Liu Wenxia, Wang Yuehan, Shi Qingxin, et al.A multi-stage restoration strategy to enhance distribution system resilience with improved conditional genera- tive adversarial nets[J]. CSEE Journal of Power and Energy Systems, 2025, 11(4): 1657-1669. [120] Zhao Jin, Li Fangxing, Sun Haoyuan, et al.Self- attention generative adversarial network enhanced learning method for resilient defense of networked microgrids against sequential events[J]. IEEE Trans- actions on Power Systems, 2023, 38(5): 4369-4380. [121] 纪鹏志, 李光肖, 王琳, 等. 基于Transformer深度学习网络的主动配电网多元源荷灾损辨识方法[J]. 电力建设, 2023, 44(3): 56-65. Ji Pengzhi, Li Guangxiao, Wang Lin, et al.Transformer-based evaluation method of power outage in active distribution networks with multiple sources and loads[J]. Electric Power Construction, 2023, 44(3): 56-65. [122] Sarker P S, Sadanandan S K, Srivastava A K.Resiliency metrics for monitoring and analysis of cyber-power distribution system with IoTs[J]. IEEE Internet of Things Journal, 2023, 10(9): 7469-7479. [123] Yang Fan, Ling Zenan, Zhang Yuhang, et al.Event detection, localization, and classification based on semi-supervised learning in power grids[J]. IEEE Transactions on Power Systems, 2023, 38(5): 4080-4094. [124] Yuan Yuxuan, Wang Yanchao, Wang Zhaoyu.A data-driven framework for power system event type identification via safe semi-supervised techniques[J]. IEEE Transactions on Power Systems, 2024, 39(1): 1460-1471. [125] Rummery G A, Niranjan M.On-line Q-learning using connectionist systems[R]. Cambridge, England: Camb- ridge University, 1994. [126] Ye Dayong, Zhang Minjie, Sutanto D.A hybrid multiagent framework with Q-learning for power grid systems restoration[J]. IEEE Transactions on Power Systems, 2011, 26(4): 2434-2441. [127] 王光华, 李晓影, 宋秉睿, 等. 基于深度强化学习的配电网负荷转供控制方法[J]. 电力自动化设备, 2022, 42(7): 253-260. Wang Guanghua, Li Xiaoying, Song Bingrui, et al.Load transfer control method of distribution network based on deep reinforcement learning[J]. Electric Power Automation Equipment, 2022, 42(7): 253-260. [128] 徐岩, 陈嘉岳, 马天祥. 基于混合强化学习的主动配电网故障恢复方法[J]. 电力系统及其自动化学报, 2024, 36(4): 50-58. Xu Yan, Chen Jiayue, Ma Tianxiang.Fault recovery method for active distribution network based on hybrid reinforcement learning[J]. Proceedings of the CSU-EPSA, 2024, 36(4): 50-58. [129] Zhao Jin, Li Fangxing, Mukherjee S, et al.Deep reinforcement learning-based model-free on-line dynamic multi-microgrid formation to enhance resilience[J]. IEEE Transactions on Smart Grid, 2022, 13(4): 2557-2567. [130] 黄玉雄, 李更丰, 张理寅, 等. 弹性配电系统动态负荷恢复的深度强化学习方法[J]. 电力系统自动化, 2022, 46(8): 68-78. Huang Yuxiong, Li Gengfeng, Zhang Liyin, et al.Deep reinforcement learning method for dynamic load restoration of resilient distribution systems[J]. Automation of Electric Power Systems, 2022, 46(8): 68-78. [131] 王子昊, 王旭, 蒋传文, 等. 基于近端策略优化算法的灾后配电网韧性提升方法[J]. 电力系统自动化, 2022, 46(21): 62-70. Wang Zihao, Wang Xu, Jiang Chuanwen, et al.Resilience improvement method for post-disaster distribution network based on proximal policy optimization algorithm[J]. Automation of Electric Power Systems, 2022, 46(21): 62-70. [132] 李鹏, 黄文琦, 王鑫, 等. 数据与知识联合驱动的人工智能方法在电力调度中的应用综述[J]. 电力系统自动化, 2024, 48(1): 160-175. Li Peng, Huang Wenqi, Wang Xin, et al.Review on application of combined data-knowledge-driven artificial intelligence methods in power dispatching[J]. Automation of Electric Power Systems, 2024, 48(1): 160-175. [133] Hughes W, Zhang Wei, Cerrai D, et al.A hybrid physics-based and data-driven model for power distribution system infrastructure hardening and outage simulation[J]. Reliability Engineering & System Safety, 2022, 225: 108628. [134] Hughes W, Watson P L, Cerrai D, et al.Assessing grid hardening strategies to improve power system performance during storms using a hybrid mechanistic- machine learning outage prediction model[J]. Reliabi- lity Engineering & System Safety, 2024, 248: 110169. [135] Huang Bin, Wang Jianhui.Applications of physics- informed neural networks in power systems-a review[J]. IEEE Transactions on Power Systems, 2023, 38(1): 572-588. [136] 邬永, 王冰, 陈玉全, 等. 融合精细化气象因素与物理约束的深度学习模型在短期风电功率预测中的应用[J]. 电网技术, 2024, 48(4): 1455-1468. Wu Yong, Wang Bing, Chen Yuquan, et al.Applica- tion of deep learning model integrating refined meteorological factors and physical constraints in short-term wind power prediction[J]. Power System Technology, 2024, 48(4): 1455-1468. [137] Hu Xinyue, Hu Haoji, Verma S, et al.Physics-guided deep neural networks for power flow analysis[J]. IEEE Transactions on Power Systems, 2021, 36(3): 2082-2092. [138] Whaley A M, Xing Jing, Boring R L, et al.Cognitive basis for human reliability analysis[R]. Washingtong DC: US Nuclear Regulatory Commission, 2016. [139] 文东山, 暴英凯, 章禹, 等. 电力系统操作人因可靠性分析及其数据库系统研究[J]. 电力系统保护与控制, 2017, 45(11): 35-42. Wen Dongshan, Bao Yingkai, Zhang Yu, et al.Analysis of human reliability in power system operation and research on its database system[J]. Power System Protection and Control, 2017, 45(11): 35-42. [140] 童节娟, 余少杰, 赵军. 核电站人员可靠性分析方法THERP中的班组因素[J]. 清华大学学报(自然科学版), 2010, 50(9): 1425-1428. Tong Jiejuan, Yu Shaojie, Zhao Jun.Team factors in THERP of human reliability analyses for nuclear power plants[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(9): 1425-1428. [141] Gertman D, Blackman H S, Marble J L, et al.The SPAR-H human reliability analysis method[R]. Washingtong DC: US Nuclear Regulatory Commission, 2005. [142] Wang Zhuoyao, Rahnamay-Naeini M, Abreu J M, et al.Impacts of operators’ behavior on reliability of power grids during cascading failures[J]. IEEE Trans- actions on Power Systems, 2018, 33(6): 6013-6024. [143] Shuvro R A, Das P, Abreu J M, et al.Correlating grid-operators’ performance with cascading failures in smart-grids[C]//2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 2019: 1-5. [144] Shuvro R A, Das P, Jyoti J S, et al.Data-integrity aware stochastic model for cascading failures in power grids[J]. IEEE Transactions on Power Systems, 2023, 38(1): 142-154. [145] Kamyab S, Labeau P E, Henneaux P.Modeling manual corrective actions in probabilistic risk assess- ment of cascading outages[J]. Electric Power Systems Research, 2024, 234: 110831. [146] Kottmann F, Kyriakidis M, Sansavini G, et al.A human operator model for simulation-based resilience assessment of power grid restoration operations[J]. Reliability Engineering & System Safety, 2023, 238: 109450. [147] Forester J, Bley D, Cooper S, et al.Expert elicitation approach for performing ATHEANA quantification[J]. Reliability Engineering & System Safety, 2004, 83(2): 207-220. [148] Bao Yingkai, Tang Junxi, Lu Haibo, et al.Analysis of human reliability in power system switching operation considering dependency of operators[C]// 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Kowloon, Hong Kong, China, 2013: 1-6. [149] Ren Hongbo, Jiang Zipei, Wu Qiong, et al.Optimal planning of an economic and resilient district integrated energy system considering renewable energy uncertainty and demand response under natural disasters[J]. Energy, 2023, 277: 127644. [150] 陆秋瑜, 江里舟, 别朝红, 等. 考虑用户能量优化调度的配电网灾后故障恢复策略[J]. 电力系统自动化, 2023, 47(1): 44-54. Lu Qiuyu, Jiang Lizhou, Bie Zhaohong, et al.Post-disaster fault restoration strategy for distribution network considering optimal scheduling of user-side energy[J]. Automation of Electric Power Systems, 2023, 47(1): 44-54. [151] 李春燕, 唐瞻文, 汤佶元, 等. 极端灾害下基于综合需求响应的电-水-气综合能源系统负荷恢复策略[J]. 高电压技术, 2024, 50(4): 1403-1415. Li Chunyan, Tang Zhanwen, Tang Jiyuan, et al.Load recovery strategy for integrated electricity-water-gas energy system based on integrated demand response under extreme disasters[J]. High Voltage Engineering, 2024, 50(4): 1403-1415. [152] Chen Shuquan, Bagrodia R, Pfeffer C C, et al.Anxiety and resilience in the face of natural disasters associated with climate change: a review and methodo- logical critique[J]. Journal of Anxiety Disorders, 2020, 76: 102297. [153] Agarwal S, Foo Sing T, Yang Yang.The impact of transboundary haze pollution on household utilities consumption[J]. Energy Economics, 2020, 85: 104591. [154] 程乐峰, 杨汝, 刘贵云, 等. 多群体非对称演化博弈动力学及其在智能电网电力需求侧响应中的应用[J]. 中国电机工程学报, 2020, 40(增刊1): 20-36. Cheng Lefeng, Yang Ru, Liu Guiyun, et al.Multi- population asymmetric evolutionary game dynamics and its applications in power demand-side response in smart grid[J]. Proceedings of the CSEE, 2020, 40(S1): 20-36. [155] 黄易君成. 基于个体行为驱动的电采暖负荷及需求响应特性研究[D]. 北京: 华北电力大学, 2023. Huang Yijuncheng.Research on electric heating load and demand response characteristics based on individual behavior[D]. Beijing: North China Electric Power University, 2023. [156] Valinejad J, Mili L, van der Wal C N, et al. Environomic-based social demand response in cyber-physical-social power systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3): 1302-1306.