1. School of Electrical Engineering Southeast University Nanjing 210096 China 2. State Grid Jiangxi Electric Power Research Institute Nanchang 330096 China
摘要 近年来,国内外学者提出了复频率的概念,其实部和虚部可分别表示电压幅值和相位角的变化速率,从而实现了电压变化率(rate of change of voltage,RoCoV)与角频率的统一,为并网逆变器控制提供了新的视角。然而传统电网同步技术仅针对角频率观测,幅值通常以开环方式计算,且RoCoV未能得到有效的闭环观测。基于此,本文提出了一种基于复相角的广义dq变换,进而设计了同步坐标系下的复频率锁频环(synchronous reference frame complex FLL,SRF-CFLL),实现了RoCoV与频率的对称统一闭环观测。同时导出了小信号模型,给出了参数设计方法,并设计了锁频环内滤波器,用以消除谐波对复频率观测的影响。最后,通过MATLAB/Simulink仿真及实验,验证了所提SRF-CFLL的有效性与准确性。
Abstract:Recently, the concept of complex frequency has been proposed, whose real and imaginary parts represent the rate of change of voltage (RoCoV) and phase angle, respectively. This concept unifies the RoCoV and angle frequency, offering a new perspective for the control of grid-connected inverters. Traditional grid synchronization techniques have primarily focused on angule frequency observation, with magnitude typically calculated in an open-loop manner, and lacking effective closed-loop observation for RoCoV. Based on this, a generalized dq transformation based on complex phase angle is proposed in this paper, leading to the design of a synchronous reference frame complex frequency-locked loop (SRF-CFLL), enabling a symmetrical and unified closed-loop observation of both RoCoV and frequency changes. Firstly, a generalized dq transformation is proposed based on the concept of complex phase angle, which extends the traditional coordinate transformation to incorporate dynamic variations in both amplitude and frequency. Secondly, leveraging this generalized transformation, the synchronous reference frame complex frequency locked-loop (SRF-CFLL) is developed, enabling unified observation of complex frequency that inherently includes both the instantaneous frequency and its rate of change (RoCoV). Thirdly, through small-signal modeling of the SRF-CFLL, it is theoretically revealed that the observed RoCoV and frequency exhibit identical dynamic responses, demonstrating that the proposed scheme achieves symmetric closed-loop observation of these two key quantities. Finally, systematic parameter tuning guidelines are established to optimize control performance, incorporating an inner-loop filter to mitigate harmonic interference and enhance frequency estimation robustness in distorted grid scenarios. Simulation and experimental results demonstrate that the designed CFLL (Complex Frequency Locked-Loop) can accurately estimate both the rate of change of frequency (RoCoV) and the instantaneous frequency within 12 ms under scenarios of grid frequency step changes or voltage amplitude ramp-down. When the grid voltage amplitude experiences sudden variations, the SRF-CFLL (Synchronous Reference Frame-Complex Frequency Locked-Loop) maintains effective closed-loop estimation of voltage amplitude through its feedback mechanism, while the generalized dq transformation ensures stable input voltage normalization. Compared with traditional methods, the SRF-CFLL exhibits significant noise immunity in RoCoV estimation: its built-in inner-loop filter effectively mitigates harmonic interference, enabling high-precision estimation within 20 ms even in noisy environments. These performance metrics validate the proposed method’s rapid response and robustness under transient voltage/frequency disturbances. The following conclusions can be drawn from simulations and experiments: (1) The SRF-CFLL exhibits symmetry in both RoCoV and frequency estimation, a feature that facilitates the analysis and design of grid-support control. (2)Due to its closed-loop feedback estimation mechanism, the SRF-CFLL demonstrates stronger anti-interference capability, ensuring zero steady-state error and thereby improving accuracy. (3)The SRF-CFLL has a computational advantage since its RoCoV estimation loop shares the same structure as the frequency estimation loop, eliminating the need for additional design. Moreover, the integrator implementation in the SRF-CFLL is simpler than discrete-time numerical differentiation, which requires noise handling and sampling time considerations.
[1] Jaalam N, Rahim N A, Bakar A H A, et al. A comprehensive review of synchronization methods for grid-connected converters of renewable energy source[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 1471-1481. [2] 许津铭, 乔瑜, 罗运虎, 等. 开环同步型单相并网逆变器小干扰建模与弱电网下稳定性分析[J]. 中国电机工程学报, 2024, 44(15): 6136-6146. Xu Jinming, Qiao Yu, Luo Yunhu, et al.Small-disturbance modeling and stability analysis of single-phase grid-tied inverter with open-loop synchronization under weak grid[J]. Proceedings of the CSEE, 2024, 44(15): 6136-6146. [3] Chen Junru, Si Wenjia, Liu Muyang, et al.On the impact of the grid on the synchronization stability of grid-following converters[J]. IEEE Transactions on Power Systems, 2023, 38(5): 4970-4973. [4] Golestan S, Ebrahimzadeh E, Guerrero J M, et al.An adaptive least-error squares filter-based phase-locked loop for synchronization and signal decomposition purposes[J]. IEEE Transactions on Industrial Electronics, 2016, 64(1): 336-346. [5] 李红, 梁军杨, 王振民, 等. 跟网型变换器的小扰动同步稳定机理分析与致稳控制[J]. 电工技术学报, 2024, 39(12): 3802-3815. Li Hong, Liang Junyang, Wang Zhenmin, et al.Small signal synchronization stability analysis and improved control strategy for grid following converter[J]. Transactions of China Electrotechnical Society, 2024, 39(12): 3802-3815. [6] 郑宇婷, 肖凡, 谢伟杰, 等. 基于并网变流器电流稳定运行域的锁相环参数设计方法[J]. 电工技术学报, 2025, 40(10): 3181-3194. Zheng Yuting, Xiao Fan, Xie Weijie, et al.A phase-locked loop parameter design method based on current stable operation domain of grid-connected converter[J]. Transactions of China Electrotechnical Society, 2025, 40(10): 3181-3194. [7] Golestan S, Guerrero J M, Vasquez J C, et al.A study on three-phase FLLs[J]. IEEE Transactions on Power Electronics, 2018, 34(1): 213-224. [8] 窦晓波, 焦阳, 全相军, 等. 基于线性卡尔曼滤波器的三相锁频环设计[J]. 中国电机工程学报, 2019, 39(3): 832-844, 962. Dou Xiaobo, Jiao Yang, Quan Xiangjun, et al.The design of three phase frequency locked loop based on linear Kalman filter[J]. Proceedings of the CSEE, 2019, 39(3): 832-844, 962. [9] 杨才伟, 王剑, 游小杰, 等. 二阶广义积分器锁频环数字实现准确性对比[J]. 电工技术学报, 2019, 34(12): 2584-2596. Yang Caiwei, Wang Jian, You Xiaojie, et al.Accuracy comparison of digital implementation on the second-order generalized integrator frequency-locked loop[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2584-2596. [10] Guo Xiaoqiang, Wu Weiyang, Chen Zhe.Multiple-complex coefficient-filter-based phase-locked loop and synchronization technique for three-phase grid-interfaced converters in distributed utility networks[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1194-1204. [11] Rodriguez P, Pou J, Bergas J, et al.Decoupled double synchronous reference frame PLL for power converters control[J]. IEEE Transactions on Power Electronics, 2007, 22(2): 584-592. [12] Golestan S, Freijedo F D, Guerrero J M.A systematic approach to design high-order phase-locked loops[J]. IEEE Transactions on Power Electronics, 2015, 30(6): 2885-2890. [13] Fang Jingyang, Zhang Ruiqi, Li Hongchang, et al.Frequency derivative-based inertia enhancement by grid-connected power converters with a frequency-locked-loop[J]. IEEE Transactions on Smart Grid, 2019, 10(5): 4918-4927. [14] Rodríguez P, Luna A, Muñoz-Aguilar R S, et al. A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions[J]. IEEE Transactions on Power Electronics, 2012, 27(1): 99-112. [15] 张纯江, 赵晓君, 郭忠南, 等. 二阶广义积分器的三种改进结构及其锁相环应用对比分析[J]. 电工技术学报, 2017, 32(22): 42-49. Zhang Chunjiang, Zhao Xiaojun, Guo Zhongnan, et al.Three improved second order generalized integrators and the comparative analysis in phase locked loop application[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 42-49. [16] 赵新, 金新民, 周飞, 等. 采用降阶谐振调节器的并网逆变器锁频环技术[J]. 中国电机工程学报, 2013, 33(15): 38-44, 17. Zhao Xin, Jin Xinmin, Zhou Fei, et al.A frequency-locked loop technology of grid-connected inverters based on the reduced order resonant controller[J]. Proceedings of the CSEE, 2013, 33(15): 38-44, 17. [17] Vazquez S, Sanchez J A, Reyes M R, et al.Adaptive vectorial filter for grid synchronization of power converters under unbalanced and/or distorted grid conditions[J]. IEEE Transactions on Industrial Electronics, 2014, 61(3): 1355-1367. [18] Quan Xiangjun, Dou Xiaobo, Wu Zaijun, et al.Complex-coefficient complex-variable filter for grid synchronization based on linear quadratic regulation[J]. IEEE Transactions on Industrial Informatics, 2017, 14(5): 1824-1834. [19] Rodríguez P, Luna A, Candela I, et al.Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1): 127-138. [20] 韩以鑫, 邹复民, 侯隽, 等. 两相静止坐标系下基于改进型双二阶广义积分器的锁相环控制策略[J]. 电气技术, 2024, 25(1): 23-33. Han Yixin, Zou Fumin, Hou Jun, et al.Phase-locked loop control strategy based on improved dual second-order generalized integrator in two-phase stationary coordinate system[J]. Electrical Engineering, 2024, 25(1): 23-33. [21] 郑涛, 刘昱彤, 章若竹, 等. 计及DSOGI-PLL动态过程影响的锁相偏差检测及相位补偿方案[J/OL]. 电工技术学报, 2024: 1-19. (2024-12-05). https://link.cnki.net/doi/10.19595/j.cnki.1000-6753.tces.241136. Zheng Tao, Liu Yutong, Zhang Ruozhu, et al. Phase-locked deviation detection and phase angle compensation scheme considering the influence of dynamic process of DSOGI-PLL[J/OL]. Transactions of China Electrotechnical Society, 2024: 1-19. (2024-12-05). https://link.cnki.net/doi/10.19595/j.cnki.1000-6753.tces.241136. [22] Quan Xiangjun, Hu Qinran, Dou Xiaobo, et al.High-order frequency-locked loop: general modeling and design[J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 12626-12635. [23] 全相军, 黄仁志, 吴在军, 等. 锁频环的同步坐标系设计与小信号建模[J]. 中国电机工程学报, 2020, 40(14): 4559-4568, 4735. Quan Xiangjun, Huang Renzhi, Wu Zaijun, et al.Synchronous reference frame design and small-signal model of frequency-locked loop[J]. Proceedings of the CSEE, 2020, 40(14): 4559-4568, 4735. [24] Quan Xiangjun, Huang A Q.PI-based synchronous reference frame frequency-locked loop[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4547-4553. [25] Sneath J, Rajapakse A D.Fault detection and interruption in an earthed HVDC grid using ROCOV and hybrid DC breakers[J]. IEEE Transactions on Power Delivery, 2014, 31(3): 973-981. [26] 李威, 吴学光, 常彬, 等. 基于电压变化率故障检测的高压直流断路器保护策略[J]. 电网技术, 2019, 43(2): 554-565. Li Wei, Wu Xueguang, Chang Bin, et al.Research on protection strategy of HVDC circuit breaker based on voltage change rate fault detection[J]. Power System Technology, 2019, 43(2): 554-565. [27] Milano F, Alhanjari B, Tzounas G.Enhancing frequency control through rate of change of voltage feedback[J]. IEEE Transactions on Power Systems, 2023, 39(1): 2385-2388. [28] Pérez-Molina M J, Larruskain D M, Eguía P, et al. Local derivative-based fault detection for HVDC grids[J]. IEEE Transactions on Industry Applications, 2022, 58(2): 1521-1530. [29] Milano F.Complex frequency[J]. IEEE Transactions on Power Systems, 2021, 37(2): 1230-1240. [30] Lei Jiaxing, Quan Xiangjun, Feng Shuang, et al.Accurate modeling of PLL with frequency-adaptive prefilter: on the positive feedback effect[J]. IEEE Transactions on Power Electronics, 2021, 37(4): 3747-3752. [31] Golestan S, Guerrero J M, Vasquez J C.High-order frequency-locked loops: a critical analysis[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3285-3291.