Review and Development Prospects of Matrix-Torque Machine Systems
Jia Shaofeng1, Sun Pengcheng1, Yang Dongxu1, Lin Jun1, Deng Hongjing1, Qiu Hongbo2, Liang Deliang1
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China; 2. College of Electrical and Information Engineering Zhengzhou University of Light Industry Zhengzhou 450002 China
Abstract:Matrix-torque machines (MTMs) are new flux modulation machines that integrate multiple magnetic sources within a single machine to interact with sources and generate torque components. MTMs demonstrate significant application potential in aerospace, polar exploration, and military equipment in complex and harsh environments. This paper reviews the current MTM technology, focusing on the concept, topology, working principle, and drive and control systems based on the latest research. Finally, it summarizes the main technical challenges MTMs face and their future application prospects. (1) The matrix concept was proposed in mathematics and extended to electrical equipment, including matrix converters, transformers, and batteries. The equipment's flexibility in control and reliability is enhanced by specially arranging each component. MTM integrates multiple magnetic sources within a single unit, generating torque through mutual coupling. This process is analogous to matrix operations, defined as a “matrix-torque machine”. (2) MTMs are commonly classified into electrically excited MTMs (EE-MTMs) and permanent magnet MTMs (PM-MTMs) based on the difference in magnetic source configuration. The EE-MTM uses an excitation winding as the excitation source, whereas the PM-MTM uses permanent magnets. MTMs can generate multiple torque components based on the multiple flux modulation principle. Each torque component can operate independently or in conjunction with others. Compared to conventional machines, MTMs offer significant advantages in key performance metrics, such as power/torque density, cost per power unit, and efficiency. (3) The MTM drive system is characterized by abundant torque sources, controllable magnetic sources, dual electrical input ports, a high degree of control freedom, and mutual coupling of magnetic sources. The mathematical model of the MTMs and the structure of the basic drive control system are introduced. The current loop decoupling control, multi-mode control, and cooperative control of the MTMs are summarized. The robust multi-mode capability and fault tolerance of MTMs under varying conditions are demonstrated. (4) The current technical challenges are discussed, including rotor winding power supply reliability, rotor loss and temperature rise suppression, fault tolerance and decoupling control strategies, and fault location and diagnosis. MTMs generally integrate multiple magnetic sources that cooperate within a single unit to generate multiple torque components, achieving breakthroughs in integration, torque density, fault tolerance, and other performance metrics. Theoretical research on the multi-magnetic source configuration of MTMs will offer new perspectives for the next generation of highly integrated machines and provide competitive solutions for application scenarios such as aviation machinery and new energy vehicle drive systems.
贾少锋, 孙鹏程, 杨东旭, 林俊, 邓宏敬, 邱洪波, 梁得亮. 矩阵式转矩电机系统综述与发展展望[J]. 电工技术学报, 2025, 40(16): 5216-5233.
Jia Shaofeng, Sun Pengcheng, Yang Dongxu, Lin Jun, Deng Hongjing, Qiu Hongbo, Liang Deliang. Review and Development Prospects of Matrix-Torque Machine Systems. Transactions of China Electrotechnical Society, 2025, 40(16): 5216-5233.
[1] 白玫. “十四五”时期新能源汽车产业竞争力提升的方向与路径[J]. 价格理论与实践, 2021(2): 18-24. Bai Mei.The direction and path of improving the competitiveness of the new energy automobile industry during the “14th Five-Year Plan” period[J]. Price (Theory & Practice), 2021(2): 18-24. [2] 于立. 多电发动机高速双凸极起动发电机系统关键技术研究[D]. 南京: 南京航空航天大学, 2019. Yu Li.Research on key technologies of high-speed doubly salient starter/generator system for more electric engine application[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. [3] 孙鹏程, 贾少锋, 梁得亮, 等. 冗余电机拓扑与应用综述及发展展望[J]. 电工技术学报, 2025, 40(6): 1729-1745. Sun Pengcheng, Jia Shaofeng, Liang Deliang, et al.Overview and prospect of redundancy machines: topologies and applications[J]. Transactions of China Electrotechnical Society, 2025, 40(6): 1729-1745. [4] 汪波, 徐文翰, 查陈诚, 等. 多三相分布式绕组和集中式绕组永磁磁阻电机对比研究[J]. 电工技术学报, 2024, 39(10): 2984-2994. Wang Bo, Xu Wenhan, Zha Chencheng, et al.Comparative study on triple 3-phase PMA-SynRM with distributed winding and concentrated winding[J]. Transactions of China Electrotechnical Society, 2024, 39(10): 2984-2994. [5] 刘能青, 向学位, 陈智, 等. 考虑屏蔽套失效的主泵电机建模及性能分析[J]. 电工技术学报, 2024, 39(增刊1): 25-36. Liu Nengqing, Xiang Xuewei, Chen Zhi, et al.Modeling and performance impact analysis of main pump canned motor considering can failure[J]. Transactions of China Electrotechnical Society, 2024, 39(S1): 25-36. [6] 刘国海, 孙汶超, 周华伟, 等. 五相永磁同步电机改进型无差拍直接转矩和磁链控制[J]. 电工技术学报, 2023, 38(24): 6658-6667. Liu Guohai, Sun Wenchao, Zhou Huawei, et al.An improved deadbeat direct torque and flux control strategy of five-phase permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2023, 38(24): 6658-6667. [7] Lawhorn D, Han Peng, Lewis D, et al.On the design of coreless permanent magnet machines for electric aircraft propulsion[C]//2021 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 2021: 278-283. [8] Sun Pengcheng, Jia Shaofeng, Liang Deliang, et al.A review on the development of high-reliability motor system for safety-critical applications: from redundancy design prospective[J]. IEEE Transactions on Trans- portation Electrification, 2024, 10(3): 7374-7388. [9] 段富海, 马骏, 张慕天. 基于GO法的某型飞机电传操纵杆系统余度研究[J]. 大连理工大学学报, 2020, 60(2): 149-158. Duan Fuhai, Ma Jun, Zhang Mutian.Study of redundancy of fly-by-wire joystick system of a certain aircraft based on GO methodology[J]. Journal of Dalian University of Technology, 2020, 60(2): 149-158. [10] 曲荣海, 李大伟, 赵钰. 磁场调制电机的由来、发展与挑战[J]. 中国电机工程学报, 2024, 44(18): 7361-7381. Qu Ronghai, Li Dawei, Zhao Yu.The origin, development and challenge of flux modulation machine[J]. Proceedings of the CSEE, 2024, 44(18): 7361-7381. [11] 程明, 文宏辉, 花为, 等. 电机气隙磁场调制统一理论及其典型应用[J]. 中国电机工程学报, 2021, 41(24): 8261-8283. Cheng Ming, Wen Honghui, Hua Wei, et al.General airgap field modulation theory for electrical machines and its typical applications[J]. Proceedings of the CSEE, 2021, 41(24): 8261-8283. [12] Ullah W, Khan F, Hussain S, et al.Analytical modeling and optimization of partitioned permanent magnet consequent pole switched flux machine with flux barrier[J]. IEEE Access, 2022, 10: 123905-123919. [13] Shi Yujun, Jian Linni, Ching T W.Quantitative identification of airgap flux density harmonics contributing to back EMF in dual-permanent- magnet-excited machine[J]. IEEE Transactions on Magnetics, 2022, 58(2): 8100705. [14] Zhao Xing, Niu Shuangxia, Zhang Xiaodong, et al.Flux-modulated relieving-DC-saturation hybrid relu- ctance machine with synthetic slot-PM excitation for electric vehicle in-wheel propulsion[J]. IEEE Transa- ctions on Industrial Electronics, 2021, 68(7): 6075-6086. [15] Bolvashenkov I, Herzog H G, Ismagilov F, et al.Reliability and fault tolerance assessment of multi- motor electric drives with multi-phase traction motors[M]//Fault-Tolerant Traction Electric Drives. Singapore: Springer Singapore, 2019: 1-24. [16] 龚夕霞, 李焱鑫, 卢琴芬. 模块化永磁直线同步电机考虑制造公差的推力鲁棒性优化[J]. 电工技术学报, 2024, 39(2): 465-474, 513. Gong Xixia, Li Yanxin, Lu Qinfen.Thrust robustness optimization of modular permanent magnet linear synchronous motor accounting for manufacture tolerance[J]. Transactions of China Electrotechnical Society, 2024, 39(2): 465-474, 513. [17] 孙玉华, 赵文祥, 吉敬华, 等. 高转矩性能多相组永磁电机及其关键技术综述[J]. 电工技术学报, 2023, 38(6): 1403-1420. Sun Yuhua, Zhao Wenxiang, Ji Jinghua, et al.Over- view of multi-star multi-phase permanent magnet machines with high torque performance and its key technologies[J]. Transactions of China Electro- technical Society, 2023, 38(6): 1403-1420. [18] 贾少锋, 冯帅, 梁得亮, 等. 一种定转子双电枢绕组多重电磁转矩单气隙磁阻电机结构: CN111146881A[P]. 2020-05-12. [19] 贾少锋, 冯帅, 梁得亮, 等. 一种定转子双永磁体双电枢绕组磁场调制永磁电机结构: CN111463939A[P]. 2020-07-28. [20] Ali M S, Haque M M, Wolfs P.A review of topological ordering based voltage rise mitigation methods for LV distribution networks with high levels of photovoltaic penetration[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 463-476. [21] 任仁, 刘硕, 张方华. 基于氮化镓器件和矩阵变压器的高频LLC直流变压器[J]. 中国电机工程学报, 2015, 35(13): 3373-3380. Ren Ren, Liu Shuo, Zhang Fanghua.High frequency LLC DC-DC transformers with a GaN transistor and a matrix transformer[J]. Proceedings of the CSEE, 2015, 35(13): 3373-3380. [22] 王佑民, 孙进, 孟永庆, 等. 矩阵式变换器控制技术研究综述[J]. 电源技术, 2012, 36(12): 1949-1952. Wang Youmin, Sun Jin, Meng Yongqing, et al.Survey of control strategies for matrix converter[J]. Journal of Power Supply, 2012, 36(12): 1949-1952. [23] 李珊瑚, 操孙鹏, 金昭阳, 等. 一种将共模电压抑制50%的间接矩阵变换器新型空间矢量调制方法[J]. 电机与控制学报, 2022, 26(1): 77-85. Li Shanhu, Cao Sunpeng, Jin Zhaoyang, et al.Improved space vector modulation strategy with 50% common-mode voltage reduction for indirect matrix converter[J]. Electric Machines and Control, 2022, 26(1): 77-85. [24] Reusch D, Lee F C.High frequency bus converter with integrated matrix transformers for CPU and telecommunications applications[C]//2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 2010: 2446-2450. [25] 王庆峰, 刘庆想, 张政权, 等. 矩阵拓扑结构脉冲变压器[J]. 强激光与粒子束, 2014, 26(9): 280-284. Wang Qingfeng, Liu Qingxiang, Zhang Zhengquan, et al.Matrix topology pulse transformer[J]. High Power Laser and Particle Beams, 2014, 26(9): 280-284. [26] Dai Mingcong, Zhang Xiangjun, Li Hui, et al.LLC converter with an integrated planar matrix trans- former based on variable width winding[C]//2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 2019: 1-4. [27] 韩伟, 张卫平, 王亮, 等. 汽车矩阵式动力电池配组的新技术: 按伏安特性曲线分选电池的方法[J]. 电源技术, 2014, 38(12): 2225-2227. Han Wei, Zhang Weiping, Wang Liang, et al.New technology in automobile power battery group assembly: according to method of volt-ampere characteristic curve of sorting batteries[J]. Chinese Journal of Power Sources, 2014, 38(12): 2225-2227. [28] Verma A, Singh B.Multimode operation of solar PV array, grid, battery and diesel generator set based EV charging station[J]. IEEE Transactions on Industry Applications, 2020, 56(5): 5330-5339. [29] 李艳波, 常悦, 陈圆媛, 等. 采用改进矩阵型可重构拓扑的锂离子电池均衡策略[J]. 西安交通大学学报, 2024, 58(6): 174-185. Li Yanbo, Chang Yue, Chen Yuanyuan, et al.A lithium-ion battery equalization strategy using improved matrix-type reconfigurable topology[J]. Journal of Xi’an Jiaotong University, 2024, 58(6): 174-185. [30] Han Weiji, Wik T, Kersten A, et al.Next-generation battery management systems: dynamic reconfigu- ration[J]. IEEE Industrial Electronics Magazine, 2020, 14(4): 20-31. [31] Yao Zhoucheng, Liu Jian.Reconfigurable battery systems: a survey on research challenges[C]//2023 8th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Okinawa, Japan, 2023: 225-235. [32] Jia Shaofeng, Sun Pengcheng, Feng Shuai, et al.Analysis and validation of dual armature winding magnetless machines with multi-torque component[J]. IEEE Transactions on Energy Conversion, 2023, 38(4): 2832-2842. [33] Jia Shaofeng, Sun Pengcheng, Feng Shuai, et al.Analysis and experiment of a dual stator/rotor PM and winding flux modulated PM machine[J]. IEEE Transactions on Industry Applications, 2023, 59(2): 1659-1669. [34] Sun Pengcheng, Jia Shaofeng, Yang Dongxu, et al.Design and comparative analysis of dual winding dual magnet machines with different PM arrangements[J]. IEEE Transactions on Industry Applications, 2025, 61(1): 151-160. [35] Sun Pengcheng, Jia Shaofeng, Liu Wenlong, et al.Novel multiple magnetic source axial flux modulation machines for aviation propulsion applications[J]. IEEE Transactions on Magnetics, 2024, 60(12): 8205605. [36] Sun Pengcheng, Jia Shaofeng, Yang Dongxu, et al.Comparative study of novel dual winding dual magnet flux-modulated machines with different stator/rotor pole combinations[J]. IEEE Transactions on Trans- portation Electrification, 2024, 10(4): 9691-9700. [37] Sun Pengcheng, Jia Shaofeng, Yang Dongxu, et al.Analysis of a novel dual winding dual magnet machine with compound fault-tolerance capability[J]. IEEE Transactions on Industrial Electronics, 2024, 71(12): 15424-15434. [38] 付兴贺, 顾胜东, 熊嘉鑫. 永磁同步电机交直轴电流解耦控制方法综述[J]. 中国电机工程学报, 2024, 44(1): 314-332. Fu Xinghe, Gu Shengdong, Xiong Jiaxin.Review of dq axis current decoupling strategy for permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2024, 44(1): 314-332. [39] Jia Shaofeng, Chen Peixiong, Yang Dongxu, et al.Field orientation control for a dual winding dual magnet flux modulated machine with torque dis- tribution capability[J]. IEEE Transactions on Industry Applications, 2024, 60(1): 343-352. [40] Zhang Zhengxiang, Wu Lijian, Yi Jiali, et al.Decoupled vector control scheme for dual-armature flux-switching permanent magnet machines[C]//2021 24th International Conference on Electrical Machines and Systems (ICEMS), Gyeongju, South Korea, 2021: 582-587. [41] Bu Feifei, Liu Haozhe, Huang Wenxin, et al.Dynamic-decoupled current control based on reduced- order observer for dual stator-winding induction generator[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2024, 12(1): 543-554. [42] Xu Wei, Dian Renjun, Liu Yi, et al.Robust flux estimation method for linear induction motors based on improved extended state observers[J]. IEEE Transactions on Power Electronics, 2019, 34(5): 4628-4640. [43] Yang Fan, Jiang Feng, Xu Zhijie, et al.Complex coefficient active disturbance rejection controller for current harmonics suppression of IPMSM drives[J]. IEEE Transactions on Power Electronics, 2022, 37(9): 10443-10454. [44] Zuo Yuefei, Zhu Jingwei, Jiang Wenhao, et al.Active disturbance rejection controller for smooth speed control of electric drives using adaptive generalized integrator extended state observer[J]. IEEE Transa- ctions on Power Electronics, 2023, 38(4): 4323-4334. [45] Jia Shaofeng, Yang Dongxu, Sun Pengcheng, et al.Decoupled current control using adaptive quasi resonant-based ESO for novel matrix-torque- component machines[J]. IEEE Transactions on Power Electronics, 2025, 40(6): 8503-8515. [46] Jia Shaofeng, Dong Xiaozhuang, Liang Deliang, et al.Control strategy of different operation modes for a multiple torque component single air gap magnetless machine[J]. IEEE Transactions on Industry Appli- cations, 2023, 59(1): 726-735. [47] Jia Shaofeng, Yang Dongxu, Sun Pengcheng, et al.Open circuit fault-tolerant control of novel matrix- torque-component machines based on multiple operation modes[J]. IEEE Transactions on Trans- portation Electrification, 2025, 11(2): 5654-5664. [48] 王柄东, 王道涵, 王晓姬, 等. 交流调磁型永磁同步电机磁通协同调控最大转矩铜耗比控制[J]. 电工技术学报, 2024, 39(12): 3630-3645. Wang Bingdong, Wang Daohan, Wang Xiaoji, et al.A maximum torque per copper loss control for AC flux-regulation permanent magnet synchronous motor with magnetic flux co-regulation[J]. Transactions of China Electrotechnical Society, 2024, 39(12): 3630-3645. [49] 侯利民, 兰骁儒, 赵世杰, 等. 多智能体系统固定时间一致性的多永磁同步电机转速协同控制[J]. 电工技术学报, 2024, 39(20): 6345-6356. Hou Limin, Lan Xiaoru, Zhao Shijie, et al.Fixed-time consensus multi-agent systems based speed coor- dination control for multiple permanent magnet synchronous motors[J]. Transactions of China Elec- trotechnical Society, 2024, 39(20): 6345-6356. [50] 樊英, 雷宇通, 张秋实. 新型交替极混合励磁电机宽速域电流高效协调控制[J]. 中国电机工程学报, 2020, 40(24): 7918-7927, 8229. Fan Ying, Lei Yutong, Zhang Qiushi.Wide speed area and efficient current coordinated control of new consequent-pole hybrid excitation motor[J]. Pro- ceedings of the CSEE, 2020, 40(24): 7918-7927, 8229. [51] 林鹤云, 黄明明, 陆婋泉, 等. 混合励磁同步电机铜耗最小化弱磁调速控制研究[J]. 中国电机工程学报, 2014, 34(6): 889-896. Lin Heyun, Huang Mingming, Lu Xiaoquan, et al.Copper loss minimization flux weakening control for hybrid excitation synchronous motor[J]. Proceedings of the CSEE, 2014, 34(6): 889-896. [52] Gu Xiangpei, Zhang Zhuoran, Sun Linnan, et al.Investigation of a parallel hybrid excitation machine with auxiliary winding for loss reduction in flux- weakening operation[J]. IEEE Transactions on Tran- sportation Electrification, 2024, 10(1): 67-77. [53] 孙远航, 王永松, 孙习武, 等. 航天用导电滑环失效建模与工艺优化研究[J]. 机械工程学报, 2020, 56(16): 1-12. Sun Yuanhang, Wang Yongsong, Sun Xiwu, et al.Research on failure modeling and process optimi- zation of transmission conductive slip ring for aerospace[J]. Journal of Mechanical Engineering, 2020, 56(16): 1-12. [54] Ferreira C, Brézard-Oudot A, Isard M, et al.Electrical and tribological behaviour of gold/gold sliding contacts of the wire/ring type for slip ring appli- cations[C]//2023 IEEE 68th Holm Conference on Electrical Contacts (HOLM), Seattle, WA, USA, 2023: 1-7. [55] 汪善进, 程远. 欧洲新能源汽车现状与发展趋势[J]. 汽车安全与节能学报, 2021, 12(2): 135-149. Wang Shanjin, Cheng Yuan.Current status and development trends of European new energy vehicles[J]. Journal of Automotive Safety and Energy, 2021, 12(2): 135-149. [56] 林祖贵, 刘启先, 吴若欣, 等. 一种用于三相绕线异步电动机的自动提刷式集电环装置: CN115764473A[P]. 2023-03-07. [57] 贾少锋, 孙鹏程, 梁得亮, 等. 一种适用于矩阵电机的磁吸式可控滑环及电机: CN119275665A[P]. 2025-01-07. [58] 贾少锋, 孙鹏程, 梁得亮, 等. 一种用于盘式双转子双绕组电机的无线供电系统结构: CN113937920B[P]. 2023-03-28. [59] 佟文明, 杨先凯, 鹿吉文, 等. 双层永磁体结构高速永磁电机转子涡流损耗解析模型[J]. 电工技术学报, 2024, 39(20): 6293-6304. Tong Wenming, Yang Xiankai, Lu Jiwen, et al.Rotor eddy current loss analytical model for high-speed permanent magnet motor based on double layer permanent magnet structure[J]. Transactions of China Electrotechnical Society, 2024, 39(20): 6293-6304. [60] 刘细平, 朱治国, 陈栋, 等. 基于转子永磁分段优化的轴向磁通永磁电机涡流损耗分析与试验[J]. 电工技术学报, 2024, 39(12): 3616-3629. Liu Xiping, Zhu Zhiguo, Chen Dong, et al.Analysis and experiment of eddy current loss of axial flux permanent magnet motor based on rotor segment optimization[J]. Transactions of China Electro- technical Society, 2024, 39(12): 3616-3629. [61] 袁志东, 贾少锋, 梁得亮. 实心转子铁心式永磁游标电机涡流损耗抑制研究[J]. 西安交通大学学报, 2023, 57(10): 173-182. Yuan Zhidong, Jia Shaofeng, Liang Deliang.Research on eddy current loss reduction in surface-mounted vernier permanent magnet machine with solid rotor[J]. Journal of Xi’an Jiaotong University, 2023, 57(10): 173-182. [62] Huang Junkui, Shoai Naini S, Miller R, et al.A hybrid electric vehicle motor cooling system: design, model, and control[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4467-4478. [63] 陶大军, 潘博, 戈宝军, 等. 电动汽车驱动电机冷却技术研究发展综述[J]. 电机与控制学报, 2023, 27(4): 75-85. Tao Dajun, Pan Bo, Ge Baojun, et al.Research and development of key technologies of electric vehicle drive motor[J]. Electric Machines and Control, 2023, 27(4): 75-85. [64] Xu Ziyi, Xu Yongming, Gai Yaohui, et al.Thermal management of drive motor for transportation: analysis methods, key factors in thermal analysis, and cooling methods: a review[J]. IEEE Transactions on Transportation Electrification, 2023, 9(3): 4751-4774. [65] Kang Ming, Wang Huimin, Guo Liyan, et al.Self-circulation cooling structure design of permanent magnet machines for electric vehicle[J]. Applied Thermal Engineering, 2020, 165: 114593. [66] Boscaglia L, Sugumar H S N, Sharma N, et al. Design and verification of an electrically excited synchronous machine rotor with direct oil cooling for truck applications[J]. IEEE Transactions on Transportation Electrification, 2025, 11(1): 236-245. [67] 马吴涵, 陈颖, 马天宇, 等. 破冰船电力推进系统在特殊工况下的控制策略[J]. 船电技术, 2024, 44(1): 58-63. Ma Wuhan, Chen Ying, Ma Tianyu, et al.Control strategies for the power propulsion system of icebreakers in special conditions[J]. Marine Electric & Electronic Engineering, 2024, 44(1): 58-63. [68] Feng Yanbiao, Zhu Haijia, Dong Zuomin.Simu- ltaneous and global optimizations of LNG-fueled hybrid electric ship for substantial fuel cost, CO2, and methane emission reduction[J]. IEEE Transactions on Transportation Electrification, 2023, 9(2): 2282-2295. [69] Bennett J W, Mecrow B C, Atkinson D J, et al.Safety-critical design of electromechanical actuation systems in commercial aircraft[J]. IET Electric Power Applications, 2011, 5(1): 37-47. [70] Xu Jinquan, Jin Wenbo, Guo Hong, et al.Design and analysis of a high-speed wet-type fault-tolerant permanent magnet motor considering oil frictional loss for aerospace electrohydrostatic actuator appli- cation[J]. IEEE Transactions on Transportation Elec- trification, 2024, 10(3): 4667-4677. [71] 于立, 张卓然, 张健, 等. 多电发动机内装式高速起动发电机研究与实践[J]. 中国电机工程学报, 2020, 40(14): 4615-4628, 4740. Yu Li, Zhang Zhuoran, Zhang Jian, et al.Study and implementation on high-speed starter/generator for more electric engine application[J]. Proceedings of the CSEE, 2020, 40(14): 4615-4628, 4740.