Research on Fire Risk of Low Voltage AC Series Fault Arc Based on Magnetohydrodynamics Simulation
Sheng Dejie1, Wang Yao1, Xing Yunqi1,2, Yu Jingtao1, Bao Zhizhou2
1. State Key Laboratory of Intelligence Power Distribution and System Equipment Hebei University of Technology Tianjin 300401 China; 2. Zhejiang PEOPLE Electric Appliance Co. Ltd Wenzhou 325600 China
Abstract:The low-voltage power supply and distribution system is directly connected to the user at the end of the power system. Its wide distribution, diverse applications, and complex structure make overhauling difficult and lack safety maintenance. Due to its negative resistance characteristics, the series arc can decrease line current, exhibiting high concealment of fault characteristics. It is a loophole in traditional relay protection methods. The series arc fault can produce high temperatures in a short time, which can cause a fire very quickly. The temperature characteristics of AC fault arcs have not been thoroughly studied, the development process and influencing factors of fault arc temperature are not apparent, and the mechanism of arc ignition and disaster needs to be clarified. This paper builds a real experimental platform for arc ignition, constructs a numerical simulation model of AC arc fault based on magnetohydrodynamics, verifies the temperature characteristics of arc fault through simulation and experiment, clarifies the ignition mechanism of arc fault, and puts forward suggestions for the improvement of relevant standards. Firstly, based on the IEC 62606 standard, combined with a temperature acquisition device, an experimental platform for arc fault ignition risk is built to simulate arc faults. The current, voltage, temperature, and thermal imaging images are collected. Secondly, the physical characteristics of AC fault arc and related test standards are analyzed, and a complete set of fault arc simulation schemes is designed. Thirdly, the control equation, calculation domain, and boundary conditions of the arc fault magnetohydrodynamic simulation model are defined, the material parameters are designed, and the division of the simulation grid is refined. Finally, by analyzing the simulation model's calculation results, the fault arc's temperature characteristics are obtained, and experiments verify the simulation results. The simulation results show that the temperature of the AC fault arc increases periodically, and the maximum temperature of the arc appears near the instantaneous peak value of the current. At this time, the influence range of arc temperature also increases significantly. The arc temperature is a cumulative process but develops rapidly in half an AC cycle. The arc current level and arc gap distance are the main factors influencing the maximum temperature of the arc, and the current level plays a decisive role in directly affecting the severity of the arc fire risk. The maximum temperature of the arc increases linearly with the current level below the 32 A current level, and the maximum temperature growth rate slows down after the 32 A current level. The existing arc fault product standards can effectively limit the maximum temperature of arc fault and the influence range of arc temperature. However, even in the time specified in the standard, the arc center temperature can still reach more than one thousand degrees. Therefore, the standard can be improved by limiting the influence range of arc temperature to reduce the fire risk. Low current arc ignition ability cannot be ignored. The current level range covered by the relevant standards should be expanded, and the maximum removal time of 1 A and 2 A current level arc faults is recommended to be 3 s and 1.5 s, respectively. The standard action characteristic requirements should be refined to prevent arc fault hazards and reduce electrical fires comprehensively.
盛德杰, 王尧, 邢云琪, 于敬涛, 包志舟. 基于磁流体动力学仿真的低压交流串联故障电弧致火风险研究[J]. 电工技术学报, 2025, 40(10): 3326-3338.
Sheng Dejie, Wang Yao, Xing Yunqi, Yu Jingtao, Bao Zhizhou. Research on Fire Risk of Low Voltage AC Series Fault Arc Based on Magnetohydrodynamics Simulation. Transactions of China Electrotechnical Society, 2025, 40(10): 3326-3338.
[1] World energy outlook 2023-analysis[EB/OL].World energy outlook 2023-analysis[EB/OL]. [2023- 10-24]. https://www.iea.org/reports/world-energy- outlook-2023. [2] 2023年上半年全国日均火灾超3000起[R].2023年上半年全国日均火灾超3000起[R]. 国家消防救援局, 2023. [3] 何志鹏, 李伟林, 邓云坤, 等. 低压交流串联故障电弧辨识方法[J]. 电工技术学报, 2023, 38(10): 2806-2817. He Zhipeng, Li Weilin, Deng Yunkun, et al.The detection of series AC arc fault in low-voltage distribution system[J]. Transactions of China Elec- trotechnical Society, 2023, 38(10): 2806-2817. [4] 李奎, 徐子健, 卢志伟, 等. 电磁式漏电保护特性影响因素分析及其稳健性设计[J]. 电工技术学报, 2023, 38(14): 3930-3942. Li Kui, Xu Zijian, Lu Zhiwei, et al.Factors analysis and robust design of electromagnetic leakage protection characteristics[J]. Transactions of China Electrotechnical Society, 2023, 38(14): 3930-3942. [5] Chandraratne C, Logenthiran T, Naayagi R T, et al.Overview of adaptive protection system for modern power systems[C]//2018 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Singapore, 2018: 1239-1244. [6] 徐云聪, 张逸, 林才华, 等. 基于电气特性-物理参数耦合的交流电弧炉模型[J]. 电工技术学报, 2024, 39(6): 1643-1655. Xu Yuncong, Zhang Yi, Lin Caihua, et al.AC arc furnace model based on coupling of electrical and physical parameters[J]. Transactions of China Elec- trotechnical Society, 2024, 39(6): 1643-1655. [7] 崔建, 孙帅, 张国钢, 等. 基于双温度磁流体电弧仿真改进Mayr电弧模型的VFTO仿真方法[J]. 电工技术学报, 2024, 39(16): 5149-5161. Cui Jian, Sun Shuai, Zhang Guogang, et al.VFTO simulation method based on dual-temperature magnetic fluid arc simulation to improve Mayr arc model[J]. Journal of Electrical Engineering, 2024, 39(16): 5149-5161. [8] 付光晶, 张峰, 张士文. 基于COMSOL Multiphysics的交流故障电弧仿真研究[J]. 电器与能效管理技术, 2018(6): 23-29. Fu Guangjing, Zhang Feng, Zhang Shiwen.Research of AC fault arc simulation based on COMSOL Multiphysics[J]. Electrical & Energy Management Technology, 2018(6): 23-29. [9] 吴祺嵘, 张认成, 涂然, 等. 直流故障电弧稳态传热特性仿真研究[J]. 电工技术学报, 2021, 36(13): 2697-2709. Wu Qirong, Zhang Rencheng, Tu Ran, et al.Simulation study on steady-state heat transfer characteristics of DC arc fault[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2697-2709. [10] 田云博, 王振兴, 马慧, 等. 大电流真空电弧阳极熔蚀过程的热力学仿真研究[J]. 中国电机工程学报, 2017, 37(4): 1021-1028. Tian Yunbo, Wang Zhenxing, Ma Hui, et al.Thermodynamics simulation of the anode erosion process under high-current vacuum arcs[J]. Pro- ceedings of the CSEE, 2017, 37(4): 1021-1028. [11] 陈默, 陆宁懿, 翟国富. 基于电弧磁流体仿真的DC 1 500 V两极塑壳断路器气道优化设计[J]. 电工技术学报, 2023, 38(8): 2222-2232. Chen Mo, Lu Ningyi, Zhai Guofu.Arc chamber optimization of DC 1 500 V two-pole circuit breakers based on arc magneto hydro dynamics simulation[J]. Transactions of China Electrotechnical Society, 2023, 38(8): 2222-2232. [12] 谢雅霜, 鲍光海. 交流继电器电弧动态特性仿真分析[J]. 电器与能效管理技术, 2023(4): 28-33. Xie Yashuang, Bao Guanghai.Simulation analysis on dynamic characteristics of AC relay arc[J]. Electrical & Energy Management Technology, 2023(4): 28-33. [13] 曹启纯, 刘向军. 高压直流继电器电弧运动仿真分析与实验研究[J]. 电工技术学报, 2019, 34(22): 4699-4707. Cao Qichun, Liu Xiangjun.Simulation analysis and experimental research on arc motion in high voltage DC relay[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4699-4707. [14] 袁涛, 杨泽文, 司马文霞, 等. 半密闭腔室内冲击闪络电弧观测及弧后气体逸散过程研究[J]. 电工技术学报, 2024, 39(3): 924-934. Yuan Tao, Yang Zewen, Sima Wenxia, et al.Study on impluse flashover arc observation and post-arc gas dissipation process in the semienclosed chamber[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 924-934. [15] 王永兴, 曲学彬, 王雯, 等. 旋弧式SF6/N2混合气体触发间隙开关电弧仿真与实验研究[J]. 高电压技术, 2023, 49(5): 2111-2120. Wang Yongxing, Qu Xuebin, Wang Wen, et al.Simulation and experimental research on rotating arc of triggering gap switch in SF6/N2 mixed gas[J]. High Voltage Engineering, 2023, 49(5): 2111-2120. [16] Wu Qirong, Yang Kai, Zhang Rencheng, et al.Numerical study on instantaneous heat transfer characteristics of AC arc-fault[J]. AIP Advances, 2021, 11(9): 095009. [17] Zhang Zhenyuan, Ren Jie, Tang Xiaotian, et al.Novel approach for arc fault identification with transient and steady state based time-frequency analysis[J]. IEEE Transactions on Industry Applications, 2022, 58(4): 4359-4369. [18] Luan Wenpeng, Lin Jianli, Liu Bo, et al.Arc fault detection and identification via non-intrusive current disaggregation[J]. Electric Power Systems Research, 2022, 210: 108113. [19] Du Liwei, Shen Yulong, Xu Zhihong, et al.Enhancing arc fault diagnosis method using feature selection strategy based on feature clustering and maximal information coefficient[J]. IEEE Transactions on Industry Applications, 2024, 60(2): 3006-3017. [20] UL1699-2017. UL standard for safety arc-fault circuit- interrupters Underwriters Laboratories Inc[S]. 2017. [21] 杜立伟, 许志红. 基于电弧故障测试系统的电缆碳化路径分析与判别[J]. 电力自动化设备, 2022, 42(12): 217-224. Du Liwei, Xu Zhihong.Analysis and judgment of cable carbonization path based on arc fault test system[J]. Electric Power Automation Equipment, 2022, 42(12): 217-224. [22] IEC 62606-2017. General requirements for arc fault detection devicesEC 62606-2017. General requirements for arc fault detection devices[S]. 2017. [23] 电弧故障保护电器(AFDD)的一般要求:GB/T 31143— 2014[S]. 2014. [24] Tangri H, Kumar N, Butti A.Arc fault protection and detection[J]. Power Research-A Journal of CPRI, 2020, 16(1): 1. [25] 山东省质量技术监督局. 电气火灾监控系统设计、施工及验收规范: DB 37/T 2863—2016[S]. 2016. [26] Schade E, Leonidovich Shmelev D.Numerical simu- lation of high-current vacuum arcs with an external axial magnetic field[J]. IEEE Transactions on Plasma Science, 2003, 31(5): 890-901. [27] 卢其威. 故障电弧检测技术与应用[M]. 北京: 电子工业出版社, 2020. [28] Ren Wanbin, Zheng Zhe, Zhang Chao, et al.Characterization method for electric arc erosion based on the in situ measurement of electrode surface morphology[J]. Measurement, 2023, 221: 113501. [29] Lindmayer M.Cooling mechanisms of switching arcs under transverse magnetic fields in comparison with arcs without magnetic blast[J]. IEEE Transactions on Plasma Science, 2018, 46(2): 444-450. [30] 许志红. 电器理论基础[M]. 北京: 机械工业出版社, 2014. [31] Du Liwei, Xu Zhihong, Chen Hongda, et al.Feature selection-based low-voltage AC arc fault diagnosis method[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3534112. [32] 殷凤良, 胡绳荪, 高忠林, 等. 等离子体电弧数值模拟的研究进展[J]. 兵器材料科学与工程, 2007, 30(6): 59-63. Yin Fengliang, Hu Shengsun, Gao Zhonglin, et al.Progress in numerical simulation of the plasma arc[J]. Ordnance Material Science and Engineering, 2007, 30(6): 59-63. [33] Bauchire J M, Gonzalez J J, Gleizes A.Modeling of a DC plasma torch in laminar and turbulent flow[J]. Plasma Chemistry and Plasma Processing, 1997, 17(4): 409-432. [34] Matthaeus W H, Brown M R.Nearly incompressible magnetohydrodynamics at low Mach number[J]. Physics of Fluids, 1988, 31(12): 3634-3644. [35] 吴翊, 荣命哲, 王小华, 等. 触头打开过程中低压空气电弧等离子体的动态分析[J]. 电工技术学报, 2008, 23(5): 12-17. Wu Yi, Rong Mingzhe, Wang Xiaohua, et al.Dynamic analysis of low-voltage air arc plasma during contact opening process[J]. Transactions of China Electrotechnical Society, 2008, 23(5): 12-17. [36] Saleh S A, Valdes M E, Mardegan C S, et al.The state-of-the-art methods for digital detection and identification of arcing current faults[J]. IEEE Transactions on Industry Applications, 2019, 55(5): 4536-4550. [37] Du Jianhua, Tu Ran, Zeng Yi, et al.An experimental study on the thermal characteristics and heating effect of arc-fault from Cu core in residential electrical wiring fires[J]. PLoS One, 2017, 12(8): e0182811. [38] Bondarenko G G, Dubinina M S, Kristya V I.Influence of the electric field enhanced thermal electron emission on temperature of the cathode with a thin insulating film in the arc gas discharge[J]. Technical Physics, 2020, 65(5): 826-831. [39] 李帅兵, 李宗英, 杨兴祖, 等. 油浸式有载分接开关的电弧温度场特性仿真研究[J]. 电气工程学报, 2023, 18(3): 135-144. Li Shuaibing, Li Zongying, Yang Xingzu, et al.Simu- lation study on arc temperature field characteristics of oil-immersed on-load tap-changer[J]. Journal of Elec- trical Engineering, 2023, 18(3): 135-144.