Abstract:When an inter-stage short circuit fault occurs in a cable aggregation line, the rapidly rising inrush current will cause the converter to block in a very short period of time, resulting in a prolonged loss of power in the system. Incipient faults are the minute breakdown stage before a short-circuit occurs in a DC cable line, which are sure sign of short-circuit failure. Incipient faults in the line can be identified and isolated in advance through active protection, which can significantly reduce the risk of short-circuit inrush currents leading to indiscriminate blocking of converter equipment throughout the network. The characteristics of incipient fault electrical quantities are weak, and it is difficult to support the protection criterion alone. And the thermal power of the arc accompanying the fault is large, which will bring significant temperature characteristics. However, it is difficult to guarantee the action speed only depending on the temperature criterion, and the incipient fault may develop into a short-circuit, so it is necessary to research new incipient fault detection algorithms. To address this problem, this paper establishes an electric-thermal characteristic analysis model for incipient faults of cable lines, analyse the characteristics of arc power in the electromagnetic field , radial propagation properties of arc energy in the temperature field and comprehensively analyse the interaction properties of the electromagnetic and temperature fields of incipient faults, revealing that the arc energy, as a coupling quantity connecting the electromagnetic field and the temperature field, has an essential difference before and after the fault. To break through the bottleneck of the existing feature quantity extraction methods, a calculation method of arc energy based on current and temperature is designed. Make use of the distributed temperature sensing(DTS)to measure the operating temperature of the whole cable, extract the arc energy features by particle swarm algorithm using the line operating temperature and differential current calculation, and an active protection criterion is formed. The active protection process is after the start-up criterion is satisfied, initiate double-ended communication and DTS, collect differential current and line temperature data within 40s, and substitute into incipient fault detection criteria, if a branch is satisfied, a command is sent to the load switch for that branch to isolate. In order to verify the validity of the active protection principle proposed in this paper, joint simulations in PSCAD and COMSOL, as well as artificial simulation tests in the laboratory were carried out. Simulation and experimental results show that this method can reliably identify and isolate the faulted section using the load switch within the shortest duration of the incipient fault, and has good applicability under different fault conditions and field conditions, and have a certain degree of noise resistance. Compared with the existing methods, the method in this paper reduces the probability of false rejection and improves reliability which can significantly reduce the probability of short-circuit faults, and ensures safe and efficient operation of large-scale DC collection systems. Provide optional ideas for the protection challenges that have always been associated with DC pooled delivery systems.
贾科, 李昱霖, 毕天姝, 张旸, 陈帅. 基于早期故障判别的直流并网系统主动保护[J]. 电工技术学报, 2025, 40(5): 1427-1439.
Jia Ke, Li Yulin, Bi Tianshu, Zhang Yang, Chen Shuai. Incipient Fault Identification Based Active Protection of DC Collection Line. Transactions of China Electrotechnical Society, 2025, 40(5): 1427-1439.
[1] 李晔, 李斌, 刘晓明, 等. 基于反向行波幅值比的对称单极柔性直流系统行波方向保护[J]. 电工技术学报, 2023, 38(9): 2418-2434. Li Ye, Li Bin, Liu Xiaoming, et al.The direction protection based on the amplitude ratio of the backward traveling wave for the symmetrical monopole flexible DC system[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2418-2434. [2] 束洪春, 邵宗学, 江耀曦, 等. 具备闭锁和非闭锁模式抑制直流故障电流的新型模块化多电平变换器拓扑[J]. 电工技术学报, 2022, 37(21): 5526-5540. Shu Hongchun, Shao Zongxue, Jiang Yaoxi, et al.A new modular multilevel converter topology with capability of DC faults clearing under blocking and non-blocking mode[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5526-5540. [3] 罗丹, 陈民铀, 赖伟, 等. 基于Haar小波变换重构开关序列的MMC子模块电容值在线监测方法[J]. 电工技术学报, 2022, 37(20): 5278-5289. Luo Dan, Chen Minyou, Lai Wei, et al.Online monitoring method for sub-module capacitance in modular multilevel converter based on Haar wavelet transform reconstruction switch sequence[J]. Transactions of China Electrotechnical Society, 2022, 37(20): 5278-5289. [4] 茆美琴, 程德健, 袁敏, 等. 基于暂态能量流的模块化多电平高压直流电网接地优化配置[J]. 电工技术学报, 2022, 37(3): 739-749. Mao Meiqin, Cheng Dejian, Yuan Min, et al.Optimal allocation of grounding system in high voltage direct current grid with modular multi-level converters based on transient energy flow[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 739-749. [5] 束洪春, 代月, 安娜, 等. 基于线性回归的柔性直流电网纵联保护方法[J]. 电工技术学报, 2022, 37(13): 3213-3226, 3288. Shu Hongchun, Dai Yue, An Na, et al.Pilot protection method of flexible DC grid based on linear regression[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3213-3226, 3288. [6] 蔡洋, 郭文勇, 赵闯, 等. 模块化多电平换流器直流故障过电流精确计算与分析[J]. 电工技术学报, 2021, 36(7): 1526-1536. Cai Yang, Guo Wenyong, Zhao Chuang, et al.The accurate calculation and analysis of overcurrent under modular multilevel converter DC fault[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1526-1536. [7] Du B X, Gu L, Liu Yong.Application of nonlinear methods in tracking failure test of printed circuit boards under reduced pressure[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(2): 548-554. [8] Wang Jing, Zhang Jingjing, Qu Bo, et al.Unified architecture of active fault detection and partial active fault-tolerant control for incipient faults[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(7): 1688-1700. [9] 贾科, 施志明, 张旸, 等. 基于电缆早期故障区段定位的柔性直流配电系统保护方法[J]. 电力系统自动化, 2023, 47(4): 163-171. Jia Ke, Shi Zhiming, Zhang Yang, et al.Protection method for flexible DC distribution system based on cable incipient fault section location[J]. Automation of Electric Power Systems, 2023, 47(4): 163-171. [10] 郑大勇, 张品佳. 交流电机定子绝缘故障诊断与在线监测技术综述[J]. 中国电机工程学报, 2019, 39(2): 395-406, 637. Zheng Dayong, Zhang Pinjia.A review of fault diagnosis and online condition monitoring of stator insulation in AC electrical machine[J]. Proceedings of the CSEE, 2019, 39(2): 395-406, 637. [11] Lu Geye, Zhang Pinjia.A novel leakage-current-based online insulation monitoring strategy for converter transformers using common-mode and differential-mode harmonics in VSC system[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 1636-1645. [12] Jannati M, Vahidi B, Hosseinian S H.Incipient faults monitoring in underground medium voltage cables of distribution systems based on a two-step strategy[J]. IEEE Transactions on Power Delivery, 2019, 34(4): 1647-1655. [13] Zhang Wenhai, Xiao Xianyong, Zhou Kai, et al.Multicycle incipient fault detection and location for medium voltage underground cable[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1450-1459. [14] Wang Zhan, Balog R S.Arc fault and flash signal analysis in DC distribution systems using wavelet transformation[J]. IEEE Transactions on Smart Grid, 2015, 6(4): 1955-1963. [15] 牟龙华, 王伊健, 蒋伟, 等. 光伏系统直流电弧故障特征及检测方法研究[J]. 中国电机工程学报, 2016, 36(19): 5236-5244, 5405. Mu Longhua, Wang Yijian, Jiang Wei, et al.Study on characteristics and detection method of DC arc fault for photovoltaic system[J]. Proceedings of the CSEE, 2016, 36(19): 5236-5244, 5405. [16] 吴春华, 徐文新, 李智华, 等. 光伏系统直流侧故障电弧类型辨识及电路保护[J]. 中国电机工程学报, 2017, 37(17): 5028-5036, 5222. Wu Chunhua, Xu Wenxin, Li Zhihua, et al.Arc fault type identification and circuit protection in photovoltaic system[J]. Proceedings of the CSEE, 2017, 37(17): 5028-5036, 5222. [17] 朱瑞, 贾科, 施志明, 等. 基于主动注入的光伏直流并网系统早期故障定位方法[J]. 电网技术, 2021, 45(1): 67-75. Zhu Rui, Jia Ke, Shi Zhiming, et al.Incipient fault location for PV collection system based on active injection[J]. Power System Technology, 2021, 45(1): 67-75. [18] Jia Ke, Shi Zhiming, Wu Wenqiang, et al.Incipient fault identification based protection for a photovoltaic DC integration system[J]. IEEE Transactions on Power Delivery, 2022: 37(3): 1660-1670. [19] 吴春华, 胡雅, 李智华, 等. 基于SSTDR的光伏系统直流母线电弧故障在线检测与定位[J]. 中国电机工程学报, 2020, 40(8): 2725-2735. Wu Chunhua, Hu Ya, Li Zhihua, et al.On-line detection and location of DC bus arc faults in PV systems based on SSTDR[J]. Proceedings of the CSEE, 2020, 40(8): 2725-2735. [20] Xiong Siheng, Liu Yadong, Fang Jian, et al.Incipient fault identification in power distribution systems via human-level concept learning[J]. IEEE Transactions on Smart Grid, 2020, 11(6): 5239-5248. [21] 汪颖, 孙建风, 肖先勇, 等. 基于优化卷积神经网络的电缆早期故障分类识别[J]. 电力系统保护与控制, 2020, 48(7): 10-18. Wang Ying, Sun Jianfeng, Xiao Xianyong, et al.Cable incipient fault classification and identification based on optimized convolution neural network[J]. Power System Protection and Control, 2020, 48(7): 10-18. [22] 熊庆, 陈维江, 汲胜昌, 等. 低压直流系统故障电弧特性、检测和定位方法研究进展综述[J]. 中国电机工程学报, 2020, 40(18): 6015-6027. Xiong Qing, Chen Weijiang, Ji Shengchang, et al.Review of research progress on characteristics, detection and localization approaches of fault arc in low voltage DC system[J]. Proceedings of the CSEE, 2020, 40(18): 6015-6027. [23] 熊庆, 肖戎, 汲胜昌, 等. 基于电磁辐射特性的直流电弧检测方法[J]. 高电压技术, 2017, 43(9): 2967-2975. Xiong Qing, Xiao Rong, Ji Shengchang, et al.Detection method for DC arc based on electromagnetic radiation characteristics[J]. High Voltage Engineering, 2017, 43(9): 2967-2975. [24] Ohtaka T, Iwata M, Tanaka S I, et al.Development of an EMTP simulation model of arcing horns interrupting fault current[J]. IEEE Transactions on Power Delivery, 2010, 25(3): 2017-2024. [25] Rong Mingzhe, Li Mei, Wu Yi, et al.3-D MHD modeling of internal fault arc in a closed container[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1220-1227. [26] 贾科, 张旸, 温志文, 等. 基于电流-温度动态映射的新能源直流汇集送出系统串联电弧故障检测[J]. 电网技术, 2022, 46(8): 3123-3131. Jia Ke, Zhang Min, Wen Zhiwen, et al.Series arc fault detection of new energy DC collection and delivery system based on current temperature dynamic mapping[J] Power grid technology, 2022, 46(8): 3123-3131. [27] Zhu Chen, Gerald R E, Huang Jie.Progress toward sapphire optical fiber sensors for high-temperature applications[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(11): 8639-8655. [28] 王敏学, 李黎, 周达明, 等. 分布式光纤传感技术在输电线路在线监测中的应用研究综述[J]. 电网技术, 2021, 45(9): 3591-3600. Wang Minxue, Li Li, Zhou Daming, et al.Overview of studies on application of distributed optical fiber sensing technology in online monitoring of transmission lines[J]. Power System Technology, 2021, 45(9): 3591-3600. [29] 牛海清, 周鑫, 王晓兵, 等. 外皮温度监测的单芯电缆暂态温度计算与试验[J]. 高电压技术, 2009, 35(9): 2138-2143. Niu Haiqing, Zhou Xin, Wang Xiaobing, et al.Calculation and experiment of transient temperatures of single-core cables on jacket temperature monitoring[J]. High Voltage Engineering, 2009, 35(9): 2138-2143. [30] 殷志良, 刘万顺, 杨奇逊, 等. 基于IEC 61850标准的采样值传输模型构建及映射实现[J]. 电力系统自动化, 2004, 28(21): 38-42. Yin Zhiliang, Liu Wanshun, Yang Qixun, et al.Modeling and mapping implementation of a sampled value model based on IEC 61850[J]. Automation of Electric Power Systems, 2004, 28(21): 38-42. [31] 梁永春, 王忠杰, 刘建业, 等. 排管敷设电缆群温度场和载流量数值计算[J]. 高电压技术, 2010, 36(3): 763-768. Liang Yongchun, Wang Zhongjie, Liu Jianye, et al.Numerical calculation of temperature field and ampacity of cables in ducts[J]. High Voltage Engineering, 2010, 36(3): 763-768. [32] 张旸, 贾科, 张恬昕, 等. 基于介质碳化通道电阻与温度映射关系的光伏直流汇集系统早期故障判别[J]. 电网技术, 2024, 48(4): 1645-1656. Zhang Yang, Jia Ke, Zhang Tianxin, et al.Mapping relationship between carbonized channel resistance and temperature based incipient fault identification method for DC lines[J]. Power System Technology, 2024, 48(4): 1645-1656.