Research Progress of Deep Learning Methods for Insulator Defect Detection in UAV Based Aerial Images
Liu Chuanyang1,2, Wu Yiquan1, Liu Jingjing2
1. College of Electronic and Information Engineering Nanjing University of Aeronautics and Astronautics Nanjing 211106 China; 2. College of Mechanical and Electrical Engineering Chizhou University Chizhou 247000 China
Abstract:Insulator is one of the most common and widely used electrical components in transmission lines, which plays a critical role in electrical insulation and mechanical support, ensuring that the current flows along the specified path and reducing electromagnetic interference with the surrounding environment. Since insulators are installed outdoors, they are exposed to wind, sunlight, rain, ice, frost and other bad weather for a long time, and their surface defects are inevitable. If the insulator appears self-explosion or drop string, which will cause leakage due to the loss of insulation, leading to electric shock accidents, thus resulting in huge economic losses. Relying on computer vision and deep learning technology, insulator defect detection from massive UAV aerial images has become an urgent problem for power operation and maintenance. However, the backgrounds of aerial images from overhead transmission line corridors are complex. Under different lighting conditions, shooting angles, shooting distances, etc., the scale of insulators in aerial images varies greatly, and the insulator strings are prone to occlusion, the defect area of the insulator is much smaller than the insulator itself. Therefore, there are numerous difficulties in detecting insulator defects in practical applications. In recent years, compared with the traditional object detection methods, deep learning methods can quickly and accurately identify insulators and their defects from power inspection images. There is still a lack of comprehensive review of the latest progress in insulator defect detection in existing literature, without introducing object detection algorithms such as anchor free algorithm, YOLOv7, Transformer, and knowledge extraction techniques. In view of this, this article summarizes and analyzes a large number of visual methods for insulator defects detection, systematically reviews deep learning methods for insulator defect detection in drone aerial images, aiming to select appropriate detection methods for specific insulator defects and provide valuable reference for researchers engaged in transmission lines fault diagnosis. This paper reviews the research progress of deep learning methods for insulator defect detection in UAV aerial images. Firstly, the current research status of transmission lines inspection based on deep learning is briefly reviewed. Then, the insulator defect detection methods based on deep learning are explained, mainly from the target detection models, lightweight network models, cascade detection models and other methods are summarized, which is conducive to the comparison between different deep learning methods and more helpful for power inspection personnel to select appropriate deep vision detection methods for fault diagnosis of specific electrical component. And the target detection models based on two-stage algorithms, one-stage algorithms and anchor-free algorithms are elucidated. The lightweight network models based on model pruning, knowledge distillation, low-rank decomposition, network quantization and the target detection model based on Transformer are summarized. Next, the self-built and public datasets for insulator defect detection are introduced. Due to the lack of training samples and unified dataset for insulator defect detection, scholars mostly conduct defect detection research through self-built datasets in different detection scenarios. Finally, the challenges faced by insulator defect detection methods based on deep learning are elucidated, including insufficient defect samples, low defect detection accuracy, difficulty in detecting small target defects, and feature extraction, etc. Based on existing deep learning techniques and recent research ideas, several important research directions in the future are pointed out, including expanding insulator defect samples, establishing unified performance evaluation indicators, small and zero sample learning, new defect detection frameworks, multi-level detection of small defects, deep fusion of multiple learning technologies, cloud-edge-end collaborative fusion, and improving network model stability and real-time performance.
刘传洋, 吴一全, 刘景景. 无人机航拍图像中绝缘子缺陷检测的深度学习方法研究进展[J]. 电工技术学报, 2025, 40(9): 2897-2916.
Liu Chuanyang, Wu Yiquan, Liu Jingjing. Research Progress of Deep Learning Methods for Insulator Defect Detection in UAV Based Aerial Images. Transactions of China Electrotechnical Society, 2025, 40(9): 2897-2916.
[1] 潘玺安, 艾欣, 胡俊杰, 等. 考虑网络安全约束的分布式智能电网边云协同优化调度方法[J]. 电工技术学报, 2024, 39(19): 6104-6118. Pan Xian, Ai Xin, Hu Junjie, et al.Network security constrained distributed smart grid edge-cloud collaborative optimization scheduling[J]. Transactions of China Electrotechnical Society, 2024, 39(19): 6104-6118. [2] 阎光伟, 马颐琳, 焦润海, 等. 航拍电力杆塔图像中销钉唯一性识别研究[J]. 电工技术学报, 2024, 39(17): 5450-5460. Yan Guangwei, Ma Yilin, Jiao Runhai, et al.Research on pin uniqueness identification in aerial power Tower images[J]. Transactions of China Electrotechnical Society, 2024, 39(17): 5450-5460. [3] 刘传洋, 吴一全. 基于深度学习的输电线路视觉检测方法研究进展[J]. 中国电机工程学报, 2023, 43(19): 7423-7445. Liu Chuanyang, Wu Yiquan.Research progress of vision detection methods based on deep learning for transmission lines[J]. Proceedings of the CSEE, 2023, 43(19): 7423-7445. [4] 徐建军, 黄立达, 闫丽梅, 等. 基于层次多任务深度学习的绝缘子自爆缺陷检测[J]. 电工技术学报, 2021, 36(7): 1407-1415. Xu Jianjun, Huang Lida, Yan Limei, et al.Insulator self-explosion defect detection based on hierarchical multi-task deep learning[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1407-1415. [5] 王道累, 张正刚, 张世恒, 等. 基于密集连接网络的航拍绝缘子旋转目标精准定位方法[J]. 电力系统保护与控制, 2024, 52(1): 35-43. Wang Daolei, Zhang Zhenggang, Zhang Shiheng, et al.Accurate positioning method of insulator rotating target in aerial photography based on dense connection network[J]. Power System Protection and Control, 2024, 52(1): 35-43. [6] 伍箴燎, 吴正平, 孙水发. 基于改进YOLOv5算法的绝缘子多缺陷检测[J]. 高压电器, 2024, 60(12): 95-102, 112. Wu Zhenliao, Wu Zhengping, Sun Shuifa.Multiple defect detection of insulators based on improved YOLOv5 algorithm[J]. High Voltage Apparatus, 2024, 60(12): 95-102, 112. [7] 高黎明. 基于轻量化目标检测的绝缘子缺陷识别[J]. 高压电器, 2023, 59(12): 237-244. Gao Liming.Insulator defect identification based on lightweight object detection[J]. High Voltage Apparatus, 2023, 59(12): 237-244. [8] 刘志颖, 缪希仁, 陈静, 等. 电力架空线路巡检可见光图像智能处理研究综述[J]. 电网技术, 2020, 44(3): 1057-1069. Liu Zhiying, Miao Xiren, Chen Jing, et al.Review of visible image intelligent processing for transmission line inspection[J]. Power System Technology, 2020, 44(3): 1057-1069. [9] 赵振兵, 蒋志钢, 李延旭, 等. 输电线路部件视觉缺陷检测综述[J]. 中国图象图形学报, 2021, 26(11): 2545-2560. Zhao Zhenbing, Jiang Zhigang, Li Yanxu, et al.Overview of visual defect detection of transmission line components[J]. Journal of Image and Graphics, 2021, 26(11): 2545-2560. [10] 齐冬莲, 韩译锋, 周自强, 等. 基于视频图像的输变电设备外部缺陷检测技术及其应用现状[J]. 电子与信息学报, 2022, 44(11): 3709-3720. Qi Donglian, Han Yifeng, Zhou Ziqiang, et al.Review of defect detection technology of power equipment based on video images[J]. Journal of Electronics & Information Technology, 2022, 44(11): 3709-3720. [11] 谢庆, 张煊宇, 王春鑫, 等. 新一代人工智能技术在输变电设备状态评估中的应用现状及展望[J]. 高压电器, 2022, 58(11): 1-16. Xie Qing, Zhang Xuanyu, Wang Chunxin, et al.Application status and prospect of the new generation artificial intelligence technology in the state evaluation of power transmission and transformation equipment[J]. High Voltage Apparatus, 2022, 58(11): 1-16. [12] 刘开培, 李博强, 秦亮, 等. 深度学习目标检测算法在架空输电线路绝缘子缺陷检测中的应用研究综述[J]. 高电压技术, 2023, 49(9): 3584-3595. Liu Kaipei, Li Boqiang, Qin Liang, et al.Review of application research of deep learning object detection algorithms in insulator defect detection of overhead transmission lines[J]. High Voltage Engineering, 2023, 49(9): 3584-3595. [13] Liu Yue, Liu Decheng, Huang Xinbo, et al.Insulator defect detection with deep learning: a survey[J]. IET Generation, Transmission & Distribution, 2023, 17(16): 3541-3558. [14] Liu Jun, Hu Mingming, Dong Junyuan, et al.Summary of insulator defect detection based on deep learning[J]. Electric Power Systems Research, 2023, 224: 109688. [15] 赵振兵, 李延旭, 戚银城, 等. 基于动态焦点损失函数和样本平衡方法的绝缘子缺陷检测方法[J]. 电力自动化设备, 2020, 40(10): 205-211. Zhao Zhenbing, Li Yanxu, Qi Yincheng, et al.Insulator defect detection method based on dynamic focus loss function and sample balance method[J]. Electric Power Automation Equipment, 2020, 40(10): 205-211. [16] 翟永杰, 杨珂, 王乾铭, 等. 基于混合样本迁移学习的盘型绝缘子缺陷检测[J]. 中国电机工程学报, 2023, 43(7): 2867-2876. Zhai Yongjie, Yang Ke, Wang Qianming, et al.Disc insulator defect detection based on mixed sample transfer learning[J]. Proceedings of the CSEE, 2023, 43(7): 2867-2876. [17] 白晓静, 谢雅祺, 赵淼, 等. 基于局部特征深度信息的绝缘子小样本缺陷检测[J]. 电网技术, 2024, 48(2): 740-749. Bai Xiaojing, Xie Yaqi, Zhao Miao, et al.Few-shot insulator defect detection based on deep information of local features[J]. Power System Technology, 2024, 48(2): 740-749. [18] 翟永杰, 胡哲东, 白云山, 等. 融合迁移学习的绝缘子缺陷分级检测方法[J]. 电子测量技术, 2023, 46(6): 23-30. Zhai Yongjie, Hu Zhedong, Bai Yunshan, et al.Integrating transfer learning for insulator defect grading detection[J]. Electronic Measurement Technology, 2023, 46(6): 23-30. [19] Zhai Yongjie, Hu Zhedong, Wang Qianming, et al.Multi-geometric reasoning network for insulator defect detection of electric transmission lines[J]. Sensors, 2022, 22(16): 6102. [20] Wen Qiaodi, Luo Ziqi, Chen Ruitao, et al.Deep learning approaches on defect detection in high resolution aerial images of insulators[J]. Sensors, 2021, 21(4): 1033. [21] 刘思言, 王博, 高昆仑, 等. 基于R-FCN的航拍巡检图像目标检测方法[J]. 电力系统自动化, 2019, 43(13): 162-168. Liu Siyan, Wang Bo, Gao Kunlun, et al.Object detection method for aerial inspection image based on region-based fully convolutional network[J]. Automation of Electric Power Systems, 2019, 43(13): 162-168. [22] 李鑫, 刘帅男, 杨桢, 等. 基于改进Cascade R-CNN的输电线路多目标检测[J]. 电子测量与仪器学报, 2021, 35(10): 24-32. Li Xin, Liu Shuainan, Yang Zhen, et al.Multi-target detection of transmission lines based on improved Cascade R-CNN[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(10): 24-32. [23] 张欣, 王红星, 陈玉权, 等. 基于改进Cascade R-CNN算法的多类型绝缘子缺陷图像联合检测[J]. 电瓷避雷器, 2022(1): 189-196. Zhang Xin, Wang Hongxing, Chen Yuquan, et al.Multi-type insulator defect joint detection based on improved Cascade R-CNN algorithm[J]. Insulators and Surge Arresters, 2022(1): 189-196. [24] 苟军年, 杜愫愫, 刘力. 基于改进掩膜区域卷积神经网络的输电线路绝缘子自爆检测[J]. 电工技术学报, 2023, 38(1): 47-59. Gou Junnian, Du Susu, Liu Li.Transmission line insulator self-explosion detection based on improved mask region-convolutional neural network[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 47-59. [25] 李斌, 屈璐瑶, 朱新山, 等. 基于多尺度特征融合的绝缘子缺陷检测[J]. 电工技术学报, 2023, 38(1): 60-70. Li Bin, Qu Luyao, Zhu Xinshan, et al.Insulator defect detection based on multi-scale feature fusion[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 60-70. [26] 陈奎, 贾立娇, 刘晓, 等. 基于多尺度特征融合的绝缘子缺陷程度检测[J]. 高电压技术, 2024, 50(5): 1889-1899. Chen Kui, Jia Lijiao, Liu Xiao, et al.Insulator defect degree detection based on multi-scale feature fusion[J]. High Voltage Engineering, 2024, 50(5): 1889-1899. [27] 崔克彬, 潘锋. 用于绝缘子故障检测的CycleGAN小样本库扩增方法研究[J]. 计算机工程与科学, 2022, 44(3): 509-515. Cui Kebin, Pan Feng.A CycleGAN small sample library amplification method for faulty insulator detection[J]. Computer Engineering & Science, 2022, 44(3): 509-515. [28] Adou M W, Xu Huarong, Chen Guanhua.Insulator faults detection based on deep learning[C]//2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID), Xiamen, China, 2019: 173-177. [29] 罗潇, 於锋, 彭勇. 基于深度学习的无人机电网巡检缺陷检测研究[J]. 电力系统保护与控制, 2022, 50(10): 132-139. Luo Xiao, Yu Feng, Peng Yong.UAV power grid inspection defect detection based on deep learning[J]. Power System Protection and Control, 2022, 50(10): 132-139. [30] 郝帅, 马瑞泽, 赵新生, 等. 基于卷积块注意模型的YOLOv3输电线路故障检测方法[J]. 电网技术, 2021, 45(8): 2979-2987. Hao Shuai, Ma Ruize, Zhao Xinsheng, et al.Fault detection of YOLOv3 transmission line based on convolutional block attention model[J]. Power System Technology, 2021, 45(8): 2979-2987. [31] Liu Chuanyang, Wu Yiquan, Liu Jingjing, et al.Insulator faults detection in aerial images from high-voltage transmission lines based on deep learning model[J]. Applied Sciences, 2021, 11(10): 4647. [32] 高健宸, 张家洪, 李英娜, 等. 基于YOLOv4的绝缘子爆裂故障识别研究[J]. 激光与光电子学进展, 2022, 59(2): 0210005. Gao Jianchen, Zhang Jiahong, Li Yingna, et al.Insulator burst fault identification based on YOLOv4[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0210005. [33] 刘行谋, 田浩, 杨永明, 等. 复杂环境背景下绝缘子缺陷图像检测方法研究[J]. 电子测量与仪器学报, 2022, 36(2): 57-67. Liu Xingmou, Tian Hao, Yang Yongming, et al.Research on image detection method of insulator defects in complex background[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(2): 57-67. [34] 李运堂, 詹叶君, 王鹏峰, 等. 基于改进YOLOV4网络的绝缘子缺陷检测[J]. 传感技术学报, 2023, 36(8): 1250-1260. Li Yuntang, Zhan Yejun, Wang Pengfeng, et al.Inspection method for insulator defect based on improved YOLOV4 network[J]. Chinese Journal of Sensors and Actuators, 2023, 36(8): 1250-1260. [35] Wang Shanshan, Zou Xinyi, Zhu Wei, et al.Insulator defects detection for aerial photography of the power grid using you only look once algorithm[J]. Journal of Electrical Engineering & Technology, 2023, 18(4): 3287-3300. [36] Hao Kun, Chen Guanke, Zhao Lu, et al.An insulator defect detection model in aerial images based on multiscale feature pyramid network[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3522412. [37] Zhang Zhengde, Zhang Bo, Lan Zhicai, et al.FINet: an insulator dataset and detection benchmark based on synthetic fog and improved YOLOv5[J]. IEEE Transactions on Instrumentation Measurement, 2022, 71: 3194909. [38] Ding Jian, Cao Haonan, Ding Xulin, et al.High accuracy real-time insulator string defect detection method based on improved YOLOv5[J]. Frontiers in Energy Research, 2022, 10: 928164. [39] Chen Jiangli, Fu Zhangjie, Cheng Xu, et al.An method for power lines insulator defect detection with attention feedback and double spatial pyramid[J]. Electric Power Systems Research, 2023, 218: 109175. [40] 赵博, 马宏忠, 张潇, 等. 定向识别航拍绝缘子及其缺陷检测方法研究[J]. 电子测量与仪器学报, 2023, 37(5): 240-251. Zhao Bo, Ma Hongzhong, Zhang Xiao, et al.Research on directional identification of aerial insulators and their defect detection methods[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(5): 240-251. [41] Dai Zhiyong.Uncertainty-aware accurate insulator fault detection based on an improved YOLOX model[J]. Energy Reports, 2022, 8: 12809-12821. [42] 王韵琳, 冯天波, 孙宁, 等. 融合注意力与多尺度特征的电力绝缘子缺陷检测方法[J]. 高电压技术, 2024, 50(5): 1933-1942. Wang Yunlin, Feng Tianbo, Sun Ning, et al.Defect detection method for power insulators based on attention and multi-scale context information[J]. High Voltage Engineering, 2024, 50(5): 1933-1942. [43] 宋智伟, 黄新波, 纪超, 等. 基于Flexible YOLOv7的输电线路绝缘子缺陷检测和故障预警方法[J]. 高电压技术, 2023, 49(12): 5084-5094. Song Zhiwei, Huang Xinbo, Ji Chao, et al.Insulator defect detection and fault warning method for transmission line based on flexible YOLOv7[J]. High Voltage Engineering, 2023, 49(12): 5084-5094. [44] 亢洁, 王勍, 刘文波, 等. 融合CAT-BiFPN与注意力机制的航拍绝缘子多缺陷检测网络[J]. 高电压技术, 2023, 49(8): 3361-3372. Kang Jie, Wang Qing, Liu Wenbo, et al.Detection model of multi-defect of aerial photo insulator by integrating CAT-BiFPN and attention mechanism[J]. High Voltage Engineering, 2023, 49(8): 3361-3372. [45] 刘逸凡, 王淑青, 庆毅辉, 等. 基于EfficientDet和双目摄像头的绝缘子缺陷检测[J]. 中国电力, 2021, 54(2): 156-163, 196. Liu Yifan, Wang Shuqing, Qing Yihui, et al.Insulator defect detection based on EfficientDet and binocular camera[J]. Electric Power, 2021, 54(2): 156-163, 196. [46] 宋立业, 刘帅, 王凯, 等. 基于改进EfficientDet的电网元件及缺陷识别方法[J]. 电工技术学报, 2022, 37(9): 2241-2251. Song Liye, Liu Shuai, Wang Kai, et al.Identification method of power grid components and defects based on improved EfficientDet[J]. Transactions of China Electrotechnical Society, 2022, 37(9): 2241-2251. [47] 赵杰伦, 张兴忠, 董红月. 基于尺度不变特征金字塔的输电线路缺陷检测[J]. 计算机工程与应用, 2022, 58(8): 289-296. Zhao Jielun, Zhang Xingzhong, Dong Hongyue.Defect detection in transmission line based on scale-invariant feature pyramid networks[J]. Computer Engineering and Applications, 2022, 58(8): 289-296. [48] 赵锐, 赵国伟, 张娟, 等. 改进CenterNet的高压输电线路巡检故障实时检测方法[J]. 计算机工程与应用, 2021, 57(17): 246-252. Zhao Rui, Zhao Guowei, Zhang Juan, et al.Real-time fault detection method for high voltage transmission line based on CenterNet improved algorithm[J]. Computer Engineering and Applications, 2021, 57(17): 246-252. [49] 李发光, 伊力哈木·亚尔买买提. 基于改进CenterNet的航拍绝缘子缺陷实时检测模型[J]. 计算机科学, 2022, 49(5): 84-91. Li Faguang, Yilihamu·Yaermaimaiti. Real-time detection model of insulator defect based on improved CenterNet[J]. Computer Science, 2022, 49(5): 84-91. [50] 苟军年, 杜愫愫, 王世铎, 等. 轻量化特征融合的CenterNet输电线路绝缘子自爆缺陷检测[J]. 北京航空航天大学学报, 2024, 50(7): 2161-2171. Gou Junnian, Du Susu, Wang Shiduo, et al.Insulator self-explosion detection in transmission line based on CenterNet fusing lightweight features[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(7): 2161-2171. [51] Yang Lei, Fan Junfeng, Song Shouan, et al.A light defect detection algorithm of power insulators from aerial images for power inspection[J]. Neural Computing and Applications, 2022, 34(20): 17951-17961. [52] Wang Suzhen, Xu Hao, Shao Mingwei, et al.Insulator defect detection based on improved you-only-look-once v4 in complex scenarios[J]. Journal of Electronic Imaging, 2023, 32(2): 023029. [53] Zan Weidong, Dong Chaoyi, Zhang Zhiming, et al.Defect identification of power line insulators based on a MobileViT-yolo deep learning algorithm[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2023, 18(8): 1271-1279. [54] 李利荣, 张云良, 陈鹏, 等. 基于轻量化YOLOv4的复杂场景绝缘子缺陷检测算法[J]. 光电子·激光, 2022, 33(6): 598-606. Li Lirong, Zhang Yunliang, Chen Peng, et al.Insulator defect detection algorithm for complex scenes based on lightweight YOLOv4[J]. Journal of Optoelectronics· Laser, 2022, 33(6): 598-606. [55] 陈奎, 刘晓, 贾立娇, 等. 基于轻量化网络与增强多尺度特征融合的绝缘子缺陷检测[J]. 高电压技术, 2024, 50(3): 1289-1300. Chen Kui, Liu Xiao, Jia Lijiao, et al.Insulator defect detection based on lightweight network and enhanced multi-scale feature fusion[J]. High Voltage Engineering, 2024, 50(3): 1289-1300. [56] 翟永杰, 赵晓瑜, 王璐瑶, 等. IDD-YOLOv7: 一种用于输电线路绝缘子多缺陷的轻量化检测方法[J]. 图学学报, 2024, 45(1): 90-101. Zhai Yongjie, Zhao Xiaoyu, Wang Luyao, et al.IDD-YOLOv7: a lightweight method for multiple defect detection of insulators in transmission lines[J]. Journal of Graphics, 2024, 45(1): 90-101. [57] 邬开俊, 徐泽浩, 单宏全. 基于FasterNet和YOLOv5改进的玻璃绝缘子自爆缺陷快速检测方法[J]. 高电压技术, 2024, 50(5): 1865-1876. Wu Kaijun, Xu Zehao, Shan Hongquan.Rapid detection method for self-exploding defects in glass insulators based on improved FasterNet and YOLOv5[J]. High Voltage Engineering, 2024, 50(5): 1865-1876. [58] 贾晓芬, 于业齐, 郭永存, 等. 航拍绝缘子自爆缺陷的轻量化检测方法[J]. 高电压技术, 2023, 49(1): 294-300. Jia Xiaofen, Yu Yeqi, Guo Yongcun, et al.Lightweight detection method of self-explosion defect of aerial photo insulator[J]. High Voltage Engineering, 2023, 49(1): 294-300. [59] 王道累, 张世恒, 袁斌霞, 等. 基于改进YOLOv5的轻量化玻璃绝缘子自爆缺陷检测研究[J]. 高电压技术, 2023, 49(10): 4382-4390. Wang Daolei, Zhang Shiheng, Yuan Binxia, et al.Research on self-explosion defect detection of lightweight glass insulators based on improved YOLOv5[J]. High Voltage Engineering, 2023, 49(10): 4382-4390. [60] 杨露露, 马萍, 王聪, 等. 结合特征重用与重建的YOLO绝缘子检测方法[J]. 计算机工程, 2024, 50(7): 303-313. Yang Lulu, Ma Ping, Wang Cong, et al.Insulator detection method using YOLO combining feature reuse and reconstruction[J]. Computer Engineering, 2024, 50(7): 303-313. [61] 谢静, 杜耀文, 刘志坚, 等. 基于轻量化改进型YOLOv5s的可见光绝缘子缺陷检测算法[J]. 电网技术, 2023, 47(12): 5273-5282. Xie Jing, Du Yaowen, Liu Zhijian, et al.Defect detection algorithm based on lightweight and improved YOLOv5s for visible light insulators[J]. Power System Technology, 2023, 47(12): 5273-5282. [62] 赵振兵, 金超熊, 戚银城, 等. 基于动态监督知识蒸馏的输电线路螺栓缺陷图像分类[J]. 高电压技术, 2021, 47(2): 406-414. Zhao Zhenbing, Jin Chaoxiong, Qi Yincheng, et al.Image classification of transmission line bolt defects based on dynamic supervision knowledge distillation[J]. High Voltage Engineering, 2021, 47(2): 406-414. [63] Ling Zenan, Zhang Dongxia, Qiu R C, et al.An accurate and real-time self-blast glass insulator location method based on faster R-CNN and U-net with aerial images[J]. CSEE Journal of Power and Energy Systems, 2019,5(4): 474-482. [64] Sampedro C, Rodriguez-Vazquez J, Rodriguez-Ramos A, et al.Deep learning-based system for automatic recognition and diagnosis of electrical insulator strings[J]. IEEE Access, 2019, 7: 101283-101308. [65] Tao Xian, Zhang Dapeng, Wang Zihao, et al.Detection of power line insulator defects using aerial images analyzed with convolutional neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(4): 1486-1498. [66] 何宁辉, 王世杰, 刘军福, 等. 基于深度学习的航拍图像绝缘子缺失检测方法研究[J]. 电力系统保护与控制, 2021, 49(12): 132-140. He Ninghui, Wang Shijie, Liu Junfu, et al.Research on infrared image missing insulator detection method based on deep learning[J]. Power System Protection and Control, 2021, 49(12): 132-140. [67] 王卓, 王玉静, 王庆岩, 等. 基于协同深度学习的二阶段绝缘子故障检测方法[J]. 电工技术学报, 2021, 36(17): 3594-3604. Wang Zhuo, Wang Yujing, Wang Qingyan, et al.Two stage insulator fault detection method based on collaborative deep learning[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3594-3604. [68] 卞建鹏, 李凡, 郝培旭, 等. 复杂环境下输电线路绝缘子的破损识别与定位[J]. 高电压技术, 2022, 48(2): 681-688. Bian Jianpeng, Li Fan, Hao Peixu, et al.Damage identification and location of transmission line insulator in complex environment[J]. High Voltage Engineering, 2022, 48(2): 681-688. [69] Zhang Zhaoyun, Huang Shihong, Li Yanxin, et al.Image detection of insulator defects based on morphological processing and deep learning[J]. Energies, 2022, 15(7): 2465. [70] Liu Jingjing, Liu Chuanyang, Wu Yiquan, et al.Insulators' identification and missing defect detection in aerial images based on cascaded YOLO models[J]. Computational Intelligence and Neuroscience, 2022, 2022: 7113765. [71] 汝承印, 张仕海, 张子淼, 等. 基于轻量级MobileNet-SSD和MobileNetV2-DeeplabV3+的绝缘子故障识别方法[J]. 高电压技术, 2022, 48(9): 3670-3679. Ru Chengyin, Zhang Shihai, Zhang Zimiao, et al.Fault identification method for high voltage power grid insulator based on lightweight MobileNet-SSD and MobileNetV2-DeeplabV3+Network[J]. High Voltage Engineering, 2022, 48(9): 3670-3679. [72] 陈庆, 闫斌, 叶润, 等. 航拍绝缘子卷积神经网络检测及自爆识别研究[J]. 电子测量与仪器学报, 2017, 31(6): 942-953. Chen Qing, Yan Bin, Ye Run, et al.Insulator detection and recognition of explosion fault based on convolutional neural networks[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(6): 942-953. [73] Wang Shuqing, Liu Yifan, Qing Yihui, et al.Detection of insulator defects with improved ResNeSt and region proposal network[J]. IEEE Access, 2020, 8: 184841-184850. [74] Antwi-Bekoe E, Liu Guisong, Ainam J P, et al.A deep learning approach for insulator instance segmentation and defect detection[J]. Neural Computing and Applications, 2022, 34(9): 7253-7269. [75] Ye Bo, Li Feng, Li Mingxuan, et al.Intelligent detection method for substation insulator defects based on CenterMask[J]. Frontiers in Energy Research, 2022, 10: 985600. [76] 王道累, 孙嘉珺, 张天宇, 等. 基于改进生成对抗网络的玻璃绝缘子自爆缺陷检测方法[J]. 高电压技术, 2022, 48(3): 1096-1103. Wang Daolei, Sun Jiajun, Zhang Tianyu, et al.Self-explosion defect detection method of glass insulator based on improved generative adversarial network[J]. High Voltage Engineering, 2022, 48(3): 1096-1103. [77] Deng Fangming, Luo Wei, Wei Baoquan, et al.A novel insulator defect detection scheme based on deep convolutional auto-encoder for small negative samples[J]. High Voltage, 2022, 7(5): 925-935. [78] Xu Weifeng, Zhong Xiaohong, Luo Man, et al.End-to-end insulator string defect detection in a complex background based on a deep learning model[J]. Frontiers in Energy Research, 2022, 10: 928162. [79] Cheng Yang, Liu Daming.An image-based deep learning approach with improved DETR for power line insulator defect detection[J]. Journal of Sensors, 2022, 2022: 6703864. [80] 姜香菊, 王瑞彤, 马彦鸿. 基于轻量级改进RT-DETR边缘部署算法的绝缘子缺陷检测[J].电工技术学报, 2025, 40(3): 842-854. Jiang Xiangju, Wang Ruitong, Ma Yanhong.Insulator defect detection based on lightweight improved RT-DETR edge deployment algorithm[J]. Transactions of China Electrotechnical Society, 2025, 40(3): 842-854. [81] 赖秋频, 杨军, 谭本东, 等. 基于YOLOv2网络的绝缘子自动识别与缺陷诊断模型[J]. 中国电力, 2019, 52(7): 31-39. Lai Qiupin, Yang Jun, Tan Bendong, et al.An automatic recognition and defect diagnosis model of transmission line insulator based on YOLOv2 network[J]. Electric Power, 2019, 52(7): 31-39. [82] Ullah I, Khan R U, Yang Fan, et al.Deep learning image-based defect detection in high voltage electrical equipment[J]. Energies, 2020, 13(2): 392. [83] 陈潇, 徐曙, 张成巍, 等. 基于改进U-Net网络对输电塔陶瓷绝缘子表面缺陷的识别算法[J]. 陶瓷学报, 2022, 43(3): 469-477. Chen Xiao, Xu Shu, Zhang Chengwei, et al.Identification algorithm of ceramic insulator surface defects on power transmission towers based on improved U-net network[J]. Journal of Ceramics, 2022, 43(3): 469-477. [84] Tomaszewski M, Ruszczak B, Michalski P.The collection of images of an insulator taken outdoors in varying lighting conditions with additional laser spots[J]. Data in Brief, 2018, 18: 765-768. [85] Prates R M, Cruz R, Marotta A P, et al.Insulator visual non-conformity detection in overhead power distribution lines using deep learning[J]. Computers & Electrical Engineering, 2019, 78: 343-355. [86] Andrel V.Unifying public datasets for insulator detection and defect classification in electrical power lines[DB/OL]. [2024-04-09].https://github.com/heitorcfelix/public-insulatordatasets. [87] Lewis D, Kulkarni P. Insulator defect detection [DB/OL]. (2023-03-27)[2024-04-09]. https://doi.org/10.21227/vkdw-x769.