Interfacial Electric Field Optimization of DC Tri-Post Insulator Based on Gradient Surface Conductance Regulation
Hu Qi1, Li Qingmin1, Liu Zhipeng2, Liu Heng2, A. Manu Haddad3
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. Beijing Key Lab of HV and EMC North China Electric Power University Beijing 102206 China; 3. Advanced High Voltage Engineering Research Centre Cardiff University Cardiff CF24 3AA UK
Abstract:Electric field concentration at the gas-solid interface and the insert-epoxy interface is considered to be the principal culprit that leads to surface flashover and outrigger burst of the DC tri-post insulator. Previously available structure optimization encounters difficulty in effectively addressing the electric field distribution of the two interfaces simultaneously, which poses imperative challenge for practical solutions. In the proposed research of this paper, the electric field distribution characteristics of the DC tri-post insulator interfaces were studied by electric-thermal-fluid multi-physics simulations, which indicated interfacial charge accumulation contributed most of the electric field concentration. A joint control strategy of electric field for dual-interfaces of the tri-post insulators based on "U-shaped" gradient conductance was proposed. Through synergistic utilization of high-conductivity coating for the insert-epoxy interface and non-linear conductivity coating for the gas-solid interface, the bulk conductance and surface conductance of the tri-post insulator present a "U-shaped" gradient distribution, which will reduce the internal and surface charge accumulation of the insulator, thereby optimizing the interfacial electric field distribution. The regulation effect of the dual interfacial coatings on electric field concentration was then studied, and the conductivity parameters of the coatings were optimized based on hybrid regulation targets for both electric field and power loss control. The presented research showed that, if the insert-epoxy interface coating conductivity was controlled less than 10-12S/m and the nonlinear gas-solid interface coating conductivity was well above the "saturation critical line", the maximum e-field strength of the insert-epoxy interface decreased from 4.48kV/mm to 0.04kV/mm, while the maximum tangential field strength of the gas-solid interface decreased from 2.47kV/mm to 1.73kV/mm. Parameter-optimized dual interfacial gradient conductance coatings can effectively suppress the interfacial electric field concentration, and the maximum electric field strength as well as the power loss can also be controlled within an allowable range, which provides fundamental reference for optimal design of high-voltage DC tri-post insulators.
胡琦, 李庆民, 刘智鹏, 刘衡, A. Manu Haddad. 基于表层梯度电导调控的直流三支柱绝缘子界面电场优化方法[J]. 电工技术学报, 2022, 37(7): 1856-1865.
Hu Qi, Li Qingmin, Liu Zhipeng, Liu Heng, A. Manu Haddad. Interfacial Electric Field Optimization of DC Tri-Post Insulator Based on Gradient Surface Conductance Regulation. Transactions of China Electrotechnical Society, 2022, 37(7): 1856-1865.
[1] 刘鹏, 吴泽华, 朱思佳, 等. 缺陷对交流1100kV GIL三支柱绝缘子电场分布影响的仿真[J]. 电工技术学报, 2022, 37(2): 469-478. Liu Peng, Wu Zehua, Zhu Sijia, et al.Simulation on electric field distribution of 1100kV AC tri-post insulator influenced by defects[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 469-478. [2] 张博雅, 张贵新. 直流GIL中固-气界面电荷特性研究综述Ⅰ:测量技术及积聚机理[J]. 电工技术学报, 2018, 33(20): 4649-4662. Zhang Boya, Zhang Guixin.Review of charge accumulation characteristics at gas-solid interface in DC GIL, part Ⅰ: measurement and mechanisms[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4649-4662. [3] 黎卫国, 张长虹, 杨旭, 等. 500kV GIL三支柱绝缘子炸裂故障分析与防范措施[J]. 电瓷避雷器, 2019(3): 221-227. Li Weiguo, Zhang Changhong, Yang Xu, et al.Analysis and protecting measures on burst fault of three-pillar insulator of 500 kV GIL[J]. Insulators and Surge Arresters, 2019(3): 221-227. [4] 吴泽华, 王浩然, 田汇冬, 等. 特高压GIL三支柱绝缘子结构参数分析与优化[J]. 高电压技术, 2018, 44(10): 3165-3173. Wu Zehua, Wang Haoran, Tian Huidong, et al.Structural parameter analysis and optimization of tri-post insulator on UHVAC GIL[J]. High Voltage Engineering, 2018, 44(10): 3165-3173. [5] 郑忠波, 陈楠, 李志闯, 等. 操作冲击电压下C4F7N/CO2混合气体252kV GIL间隙及沿面放电特性[J]. 电工技术学报, 2021, 36(14): 3055-3062. Zheng Zhongbo, Chen Nan, Li Zhichuang, et al.Discharge characteristics of 252kV gas insulated transmission lineunder switching impulse voltage in C4F7N/CO2 mixtures[J]. Transactions of China Electrotechnical Society, 2021, 36(14): 3055-3062. [6] 王健, 李伯涛, 李庆民, 等. 直流GIL中线形金属微粒对柱式绝缘子表面电荷积聚的影响[J]. 电工技术学报, 2016, 31(15): 213-222. Wang Jian, Li Botao, Li Qingmin, et al.Impact of linear metal particle on surface charge accumulation of post insulator within DC GIL[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 213-222. [7] 侯志强, 郭若琛, 李军浩. 直流电压下SF6/N2混合气体沿面局部放电特性[J]. 电工技术学报, 2020, 35(14): 3087-3096. Hou Zhiqiang, Guo Ruochen, Li Junhao.Partial discharge characteristics of the surface discharge in SF6/N2 of the mixed gas under DC voltage[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 3087-3096. [8] 王渊, 马国明, 周宏扬, 等. SF6/N2混合气体中直流叠加雷电冲击复合电压作用下绝缘子闪络特性[J]. 电工技术学报, 2019, 34(14): 3084-3092. Wang Yuan, Ma Guoming, Zhou Hongyang, et al.Flashover characteristics of spacers in SF6/N2-filled under composite voltage of DC and lightning impulse[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 3084-3092. [9] 田浩, 林生军, 张鹏飞, 等. 不同工艺对特高压GIL三支柱绝缘子组织均匀性的影响[J]. 绝缘材料, 2018, 51(12): 67-73,78. Tian Hao, Lin Shengjun, Zhang Pengfei, et al.Effect of different processes on structure uniformity of UHV GIL three post insulator[J]. Insulating Materials, 2018, 51(12): 67-73,78. [10] 高璐, 贾云飞, 汲胜昌, 等. 环保型1100 kV GIL用三支柱绝缘子多物理场耦合仿真及校核[J]. 高电压技术, 2020, 46(3): 987-996. Gao Lu, Jia Yunfei, Ji Shengchang, et al.Multi-physical field analysis and verification of tri-post insulator on environment-friendly 1100kV GIL[J]. High Voltage Engineering, 2020, 46(3): 987-996. [11] 吴泽华, 田汇冬, 王浩然, 等. 特高压GIL哑铃型三支柱绝缘子优化设计方法[J]. 电网技术, 2020, 44(7): 2754-2761. Wu Zehua, Tian Huidong, Wang Haoran, et al.Optimization design method for UHVAC GIL dumbbell type tri-post insulators[J]. Power System Technology, 2020, 44(7): 2754-2761. [12] 鲁加明, 周振华, 曹伟伟, 等. GIL用三柱式支撑绝缘子结构研究[J]. 机械设计与制造, 2015(9): 52-55. Lu Jiaming, Zhou Zhenhua, Cao Weiwei, et al.The structure study of three colums support insulator with GIL[J]. Machinery Design & Manufacture, 2015(9): 52-55. [13] 张博雅, 张贵新. 直流GIL中固-气界面电荷特性研究综述Ⅱ:电荷调控及抑制策略[J]. 电工技术学报, 2018, 33(22): 5145-5158. Zhang Boya, Zhang Guixin.Review of charge accumulation characteristics at gas-solid interface in DC GIL, part Ⅱ: charge control and suppression strategy[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5145-5158. [14] 李进, 王泽华, 陈允, 等. 高压气体绝缘输电设备用功能梯度材料研究进展[J]. 高电压技术, 2020, 46(7): 2471-2477. Li Jin, Wang Zehua, Chen Yun, et al.Research progress on functionally graded materials for high voltage gas insulated transmission apparatus[J]. High Voltage Engineering, 2020, 46(7): 2471-2477. [15] Li Jin, Liang H C, Du B X, et al.Surface functional graded spacer for compact HVDC gaseous insulated system[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 664-667. [16] Du B X, Ran Zhaoyu, Li Jin, et al.Novel insulator with interfacial σ-FGM for DC compact gaseous insulated pipeline[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(3): 818-825. [17] 李进, 张程, 杜伯学, 等. 直流GIL用非线性电导环氧绝缘子电场仿真[J]. 高电压技术, 2019, 45(4): 1056-1063. Li Jin, Zhang Cheng, Du Boxue, et al.Electrical field simulation of epoxy spacer with nonlinear conductivity for DC GIL[J]. High Voltage Engineering, 2019, 45(4): 1056-1063. [18] Du B X, Liang H C, Li J, et al.Interfacial E-field self-regulating insulator considered for DC GIL application[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(3): 801-809. [19] 周宏扬, 马国明, 刘姝嫔, 等. 基于电-热多物理场耦合模型的直流GIL绝缘子表面电荷积聚及其对沿面电场影响的研究[J]. 中国电机工程学报, 2017, 37(4): 1251-1260. Zhou Hongyang, Ma Guoming, Liu Shupin, et al.Study on surface charges accumulation on insulator and its effects on the surface electrical field in DC-GIL with electro-thermal coupling model[J]. Proceedings of the CSEE, 2017, 37(4): 1251-1260. [20] Ma Guoming, Zhou Hongyang, Lu Shijie, et al.Effect of material volume conductivity on surface charges accumulation on spacers under DC electro-thermal coupling stress[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(4): 1211-1220. [21] 杜乾栋, 张乔根, 赵军平, 等. 材料电导率对盆式绝缘子沿面电场与电荷分布的影响[J]. 高电压技术, 2018, 44(12): 3865-3871. Du Qiandong, Zhang Qiaogen, Zhao Junping, et al.Influence of electric conductivity of materials on field and surface charge distribution of basin-type insulator[J]. High Voltage Engineering, 2018, 44(12): 3865-3871. [22] 李进, 王雨帆, 梁虎成, 等. 高压直流GIL盆式绝缘子非线性电导参数优化[J]. 中国电机工程学报, 2021, 41(1): 166-173, 407. Li Jin, Wang Yufan, Liang Hucheng, et al.Parameter optimization of nonlinear conductivity spacer for HVDC GIL[J]. Proceedings of the CSEE, 2021, 41(1): 166-173, 407. [23] 罗毅, 唐炬, 潘成, 等. 直流GIS/GIL盆式绝缘子表面电荷主导积聚方式的转变机理[J]. 电工技术学报, 2019, 34(3): 5039-5048. Luo Yi, Tang Ju, Pan Cheng, et al.The transition mechanism of surface charge accumulation dominating way in DC GIS/GIL[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 5039-5048. [24] 陈允, 于洋, 崔博源, 等. 1100kV盆式绝缘子界面处理工艺及质量管控措施[J]. 绝缘材料, 2015, 48(5): 44-49. Chen Yun, Yu Yang, Cui Boyuan, et al.Study of interface treatment process and quality control measures for 1100 kV basin-type insulator[J]. Insulating Materials, 2015, 48(5): 44-49.