电工技术学报  2022, Vol. 37 Issue (7): 1800-1809    DOI: 10.19595/j.cnki.1000-6753.tces.210311
电力系统与综合能源 |
基于卫星遥感的超短期分布式光伏功率预测
刘晓艳1,2, 王珏1,2, 姚铁锤1,2, 张沛3, 迟学斌1,2
1.中国科学院计算机网络信息中心 北京 100190;
2.中国科学院大学 北京 100040;
3.华东交通大学 南昌 330013
Ultra Short-Term Distributed Photovoltaic Power Prediction Based on Satellite Remote Sensing
Liu Xiaoyan1,2, Wang Jue1,2, Yao Tiechui1,2, Zhang Pei3, Chi Xuebin1,2
1. Computer Network Information Center Beijing 100190 China;
2. University of Chinese Academy of Sciences Beijing 100040 China;
3. East China Jiaotong University Nanchang 330013 China
全文: PDF (1467 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 光伏功率预测对于电网调度具有重要意义。该文针对缺少辐照度测量装置的分布式光伏电站,提出一种基于卫星遥感的超短期分布式光伏功率预测方法。首先基于Res-UNet模型对短波辐照(SWR)网格进行时空预测;然后对预测的SWR网格进行空间插值得到地面分布式站点的未来辐照度;最后构建基于编解码器的长短期记忆(LSTM)模型预测光伏出力。其中Res-UNet可以充分学习SWR网格的时空相关性,LSTM通过引入日编码和时间编码可以更好地学习辐照度的年周期性和日周期性。在真实光伏电站上的功率实验表明,与以数值天气预报辐照度为输入的光伏功率预测方法相比,以Res-UNet+插值预测的辐照度为输入的光伏功率预测方法实现了更高精度的超短期光伏功率预测。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晓艳
王珏
姚铁锤
张沛
迟学斌
关键词 超短期光伏功率预测卫星遥感Res-UNet辐照度时空相关性短波辐照(SWR)    
Abstract:Photovoltaic (PV) output prediction is of great significance for power grid dispatching. In this paper, an ultra short-term distributed PV power prediction method based on satellite remote sensing is proposed for the distributed PV power station without irradiance measurement device. Firstly, the SWR grid is spatio-temporal predicted based on Res-UNet model, and then the predicted SWR grid is spatially interpolated to obtain the future irradiance of the ground distributed stations. Finally, the LSTM model with codec is constructed to predict the PV output. Res-UNet can fully learn the spatio-temporal correlation of the SWR grid, and LSTM can better learn the annual and daily periodicity of irradiance by introducing daily coding and time coding. The power experiments on real PV power stations show that, compared with the PV power prediction method that takes the irradiance of numerical weather forecast as the input, the PV power prediction method that takes the irradiance predicted by the Res-UNet+ interpolation as the input realizes ultra short term power prediction with higher accuracy.
Key wordsUltra short-term photovoltaic power prediction    satellite remote sensing    Res-UNet    irradiance    spatio temporal correlation    short wave radiation(SWR)   
收稿日期: 2021-03-11     
PACS: TM615  
基金资助:中国科学院战略性先导科技专项(A类)资助项目(XDA27000000)
通讯作者: 王珏 男,1981年生,博士,副研究员,研究方向为人工智能算法与应用软件、高性能计算。E-mail:wangjue@sccas.cn   
作者简介: 刘晓艳 女,1996年生,硕士研究生,研究方向为人工智能、光伏发电功率预测。E-mail:liuxiaoyan@cnic.cn
引用本文:   
刘晓艳, 王珏, 姚铁锤, 张沛, 迟学斌. 基于卫星遥感的超短期分布式光伏功率预测[J]. 电工技术学报, 2022, 37(7): 1800-1809. Liu Xiaoyan, Wang Jue, Yao Tiechui, Zhang Pei, Chi Xuebin. Ultra Short-Term Distributed Photovoltaic Power Prediction Based on Satellite Remote Sensing. Transactions of China Electrotechnical Society, 2022, 37(7): 1800-1809.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.210311          https://dgjsxb.ces-transaction.com/CN/Y2022/V37/I7/1800