Research of Electric Field of Lightning Initial Streamer from Wind Turbine Blade and Critical Length Based on Atmospheric Conditions
Lei Yuhang, Cai Guowei, Pan Chao
Key Laboratory of Modern Power System Simulation and Control & Renewable Energy TechnologyMinistry of Education Northeast Electric Power University Jilin 132012 China
Abstract:With finite element simulation software COMSOL, this paper calculated background potential of wind turbine blade. Based on critical length criterion, electric field of lightning initial streamer from blade and critical length were studied under different atmospheric conditions, and the critical background potential was analyzed. The mechanism of initial streamer electric field and critical length affecting the upward leader inception from blade was revealed, thereby accordingly the assessment system of lightning upward leader inception from wind turbine blade was proposed. Moreover, the impact of atmospheric conditions on initial streamer electric field and critical length was explored. It is shown that when lightning conditions are constant, the initial streamer electric field and critical length change under different atmospheric conditions, leading to the change of critical background potential, which in turn affects the upward leader inception from blade. The change of atmospheric conditions makes the ionization degree of initial streamer zone different, which affects the initial streamer electric field and critical length. The influence of air pressure and temperature is more obvious, while the effect of humidity is smaller. The conclusions provide a useful reference for the theoretical research on wind turbine lightning protection.
雷宇航, 蔡国伟, 潘超. 大气条件下雷击风机叶片初始流注区电场强度与临界长度研究[J]. 电工技术学报, 2019, 34(20): 4392-4399.
Lei Yuhang, Cai Guowei, Pan Chao. Research of Electric Field of Lightning Initial Streamer from Wind Turbine Blade and Critical Length Based on Atmospheric Conditions. Transactions of China Electrotechnical Society, 2019, 34(20): 4392-4399.
[1] 孙欣, 方陈, 沈风, 等. 考虑风电出力不确定性的发用电机组组合方法[J]. 电工技术学报, 2017, 32(4): 204-211. Sun Xin, Fang Chen, Shen Feng, et al.An integrated generation-consumption unit commitment model considering the uncertainty of wind power[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 204-211. [2] 肖繁, 张哲, 尹项根, 等. 含双馈风电机组的电力系统故障计算方法研究[J]. 电工技术学报, 2016, 31(1): 14-23. Xiao Fan, Zhang Zhe, Yin Xianggen, et al.The fault calculation method of power systems including doubly-fed induction generators[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 14-23. [3] 郭子炘, 李庆民, 闫江燕, 等. 海上风电场雷击演化物理机制的研究综述[J]. 电气工程学报, 2015, 10(5): 10-19. Guo Zixin, Li Qingmin, Yan Jiangyan, et al.Summary of research on physical evolution mechanism of lighting discharge of offshore wind farms[J]. Journal of Electrical Engineering, 2015, 10(5): 10-19. [4] 肖翔, 张小青, 李聪. 风电机组雷电过电压的仿真分析[J]. 电工技术学报, 2015, 30(24): 237-244. Xiao Xiang, Zhang Xiaoqing, Li Cong.Simulation analysis on overvoltage in wind turbines by lightning stroke[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 237-244. [5] 罗日成, 李稳, 李志前, 等. 基于分段参数的风力机组建模及雷击暂态过电压分析[J]. 高电压技术, 2015, 41(8): 2780-2787. Luo Richeng, Li Wen, Li Zhiqian, et al.Modeling of wind turbine generator based on piecewise parameter and its lightning transient overvoltage analysis[J]. High Voltage Engineering, 2015, 41(8): 2780-2787. [6] 洪华芳, 周歧斌, 边晓燕. 风力发电机叶片的雷击损伤与雷电保护[J]. 华东电力, 2009, 37(10): 1778-1781. Hong Huafang, Zhou Qibin, Bian Xiaoyan.Lightning damages and protection for wind turbine blades[J]. East China Electric Power, 2009, 37(10): 1778-1781. [7] 屈路, 文习山, 王羽, 等. 接闪器对旋转风机引雷能力影响的试验研究[J]. 高电压技术, 2017, 43(5): 1628-1634. Qu Lu, Wen Xishan, Wang Yu, et al.Experimental study on the influence of the air terminal on triggered lightning ability of rotation wind turbine[J]. High Voltage Engineering, 2017, 43(5): 1628-1634. [8] 文习山, 屈路, 王羽, 等. 叶片转动对风机引雷能力影响的模拟试验研究[J]. 中国电机工程学报, 2017, 37(7): 2151-2158. Wen Xishan, Qu Lu, Wang Yu, et al.Experimental study of the influence of the blade rotation on triggered lightning ability of wind turbine’s blades[J]. Proceedings of the CSEE, 2017, 37(7): 2151-2158. [9] 蓝磊, 姒天军, 王羽, 等. 雷电下转动风机叶片接闪特性模拟试验研究[J]. 电网技术, 2018, 42(4): 1328-1334. Lan Lei, Si Tianjun, Wang Yu, et al.Experimental study on lightning discharge characteristic of wind turbine’s rotating blades under lightning[J]. Power System Technology, 2018, 42(4): 1328-1334. [10] 任瀚文, 郭子炘, 马宇飞, 等. 雷击风机叶片的跃变击距特性与定量表征[J]. 电工技术学报, 2017, 32(15): 216-224. Ren Hanwen, Guo Zixin, Ma Yufei, et al.Quantita- tive characterization of the striking saltus distance of wind turbine blade[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 216-224. [11] Carrara G, Thione L.Switching surge strength of large air gaps: a physical approach[J]. IEEE Transa- ctions on Power Apparatus and Systems, 1976, 95(2): 512-524. [12] Vidal F, Gallimberti I, Rizk F, et al.Modeling of the air plasma near the tip of the positive leader[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 1339-1349. [13] Gallimberti I, Bacchiega G, Bondiou-Clergerie A, et al.Fundamental processes in long air gap dis- charges[J]. Comptes Rendus Physique, 2002, 3(10): 1335-1359. [14] Larsson A, Bondiou-Clergerie A, Gallimberti I.Numerical modeling of inhibited electrical discharges in air[J]. Journal of Physics D: Applied Physics, 1998, 31(15): 1831-1840. [15] Bondiou A, Gallimberti I.Theoretical modelling of the development of the positive spark in long gaps[J]. Journal of Physics D: Applied Physics, 1994, 27(6): 1252-1266. [16] 徐勇, 汪霄飞, 朱英浩, 等. 大气条件对空气间隙放电特性的影响及其数值解析式[J]. 电工技术学报, 2007, 22(4): 21-26. Xu Yong, Wang Xiaofei, Zhu Yinghao, et al.Effect of atmosphere condition on discharge characteristic of air gap and its analytic equation of numerical value[J]. Transactions of China Electrotechnical Society, 2007, 22(4): 21-26. [17] Rizk F.Modeling of transmission line exposure to direct lightning strokes[J]. IEEE Transactions on Power Delivery, 1990, 5(4): 1983-1997. [18] 马宇飞, 张黎, 闫江燕, 等. 风机叶片雷击上行先导的起始物理机制与临界长度判据[J]. 中国电机工程学报, 2016, 36(21): 5975-5982. Ma Yufei, Zhang Li, Yan Jiangyan, et al.Inception mechanism of lightning upward leader from the wind turbine blade and a proposed critical length criterion[J]. Proceedings of the CSEE, 2016, 36(21): 5975-5982. [19] 周泽存, 沈其工, 方瑜, 等. 高电压技术[M]. 北京: 中国电力出版社, 2007. [20] 陈维江, 余辉, 贺恒鑫, 等. 雷电先导下行过程近地电场时空分布与模拟方法研究[J]. 中国电机工程学报, 2014, 34(29): 5221-5233. Chen Weijiang, Yu Hui, He Hengxin, et al.Spatial- temporal characteristics and simulation method of the electric field near ground during lightning attachment process[J]. Proceedings of the CSEE, 2014, 34(29): 5221-5233. [21] Becerra M, Cooray V.A simplified physical model to determine the lightning upward connecting leader inception[J]. IEEE Transactions on Power Delivery, 2006, 21(2): 897-908. [22] Cooray V, Rakov V, Theethayi N.The lightning striking distance-revisited[J]. Journal of Electrostatic, 2007, 65(5): 296-306. [23] 陈亚君, 吴国庆, 倪红军, 等. 风力发电机组叶片材料综述[J]. 化工新型材料, 2010, 38(9): 37-38. Chen Yajun, Wu Guoqing, Ni Hongjun, et al.Research of fan blade material[J]. New Chemical Materials, 2010, 38(9): 37-38. [24] 孟晓波, 惠建峰, 卞星明, 等. 低气压下流注放电特性的研究[J]. 中国电机工程学报, 2011, 31(25): 139-149. Meng Xiaobo, Hui Jianfeng, Bian Xingming, et al.Research on the characteristic of streamer discharge at low air pressure[J]. Proceedings of the CSEE, 2011, 31(25): 139-149. [25] 惠建峰, 关志成, 王黎明, 等. 正流注传播动力学特性随气压湿度的变化[J]. 高电压技术, 2007, 33(6): 55-58. Hui Jianfeng, Guan Zhicheng, Wang Liming, et al.Variation of propagation dynamics of positive streamer with pressure and humidity[J]. High Voltage Engineering, 2007, 33(6): 55-58.