Research on the Combustion Process of Vacuum Arc Based on an Improved Pulse Coupled Neural Network Model
Xiang Chuan1, Wang Hui2, Shi Pengfei1, Dong Huajun3
1. College of Marine Electrical Engineering Dalian Maritime University Dalian 116026 China; 2. School of Electrical Engineering Chongqing University Chongqing 400044 China; 3. School of Mechanical Engineering Dalian Jiaotong University Dalian 116028 China
Abstract:The combustion process of Vacuum arc, such as the evolution of arc shape and the change of characteristic parameters during the breaking process of short current, is one of the key characteristics that determines the breaking capacity of vacuum circuit breakers(VCBs). In this study, an improved pulse coupled neural network (PCNN) model was firstly established to perform multi-value segmentation of vacuum arc images. Then, the morphological technique was used to select the connected domain and filter the edge noise of the segmented arc image, the characteristic parameters, such as the displacement of the moving contact and the arc area, were quantified. Finally, combining the characteristic parameter curves and the arc experiment images, the combustion process of vacuum arc during the entire breaking process, including the generation, development and extinction of vacuum arc, were analyzed quantitatively and qualitatively. The research results illustrated that the improved PCNN model showed rich details and features, distinct edges, low noise and high accuracy of segmentation, it was suitable to process vacuum arc images which have large gradient changes of gray in the edge region. Based on the arc characteristic parameters and experimental results, the quantitative and qualitative analysis of the arc combustion process was more detailed and deeper than our previous research work. The peak arc current had a great influence on the arc area, the moment of maximum arc area, the duration of the arc combustion stages and the transformation process. This paper combines quantitative and qualitative research results, and deeply studies the combustion process of arc during the breaking process of VCBs, which can provide reference for vacuum arc regulation strategy.
向川, 王惠, 史鹏飞, 董华军. 基于改进脉冲耦合神经网络模型的真空电弧燃烧过程研究[J]. 电工技术学报, 2019, 34(19): 4028-4037.
Xiang Chuan, Wang Hui, Shi Pengfei, Dong Huajun. Research on the Combustion Process of Vacuum Arc Based on an Improved Pulse Coupled Neural Network Model. Transactions of China Electrotechnical Society, 2019, 34(19): 4028-4037.
[1] 王季梅. 真空开关技术与应用[M]. 北京: 机械工业出版社, 2007. [2] Schellekens H.Modelling of the diffuse arc in a vacuum circuit breaker [D]. Eindhoven, Netherlands: Eindhoven University of Technology, 1983. [3] Schulman M B, Slade, P G.Sequential modes of drawn vacuum arcs between butt contacts for currents in the 1kA to 16kA range[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 1995, A18(2): 417-422. [4] 董华军, 廖敏夫, 邹积岩, 等. 真空开关电弧图像采集及其处理过程[J]. 电工技术学报, 2007, 22(8): 174-178. Dong Huajun, Liao Minfu, Zou Jiyan, et al.Collection and processing procedure of vacuum switches arc images[J]. Transactions of China Electrotechnical Society, 2007, 22(8): 174-178. [5] 邹积岩, 董华军, 向川, 等. 真空开关电弧电子温度诊断的实验研究[J]. 真空科学与技术学报, 2008, 28(6): 531-534. Zou Jiyan, Dong Huajun, Xiang Chuan, et al.Electron temperature diagnosis of metal vapor plasma of vacuum switching arc[J]. Chinese Journal of Vacuum Science and Technology, 2008, 28(6): 531-534. [6] 刘斌, 武建文. 直流真空电弧强迫开断电弧形态[J]. 电工技术学报, 2016, 31(24): 157-163. Liu Bin, Wu Jianwen.Morphology of forcing interruption arc of DC vacuum arc[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 157-163. [7] Qin Taotao, Dong Enyuan, Wang Yongxing, et al.Influence of the contact opening speed on DC vacuum arc[J]. IEEE Transactions on Plamsa Science, 2015, 43(3): 878-883. [8] 朱立颖, 武建文. 横向磁场下中频真空电弧形态及电弧电压特性[J]. 中国电机工程学报, 2011, 31(1): 131-137. Zhu Liying, Wu Jianwen.Modes of intermediate-frequency vacuum arc and characteristics of arc voltage under transverse magnetic field[J]. Proceedings of the CSEE, 2011, 31(1): 131-137. [9] 向川, 黄智慧, 董华军, 等. 真空开关电弧形态演变实验与仿真研究[J]. 真空科学与技术学报, 2013, 33(9): 871-876. Xiang Chuan, Huang Zhihui, Dong Huajun, et al.Real time imaging and simulation of appearance variations in vacuum arc[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(9): 871-876. [10] 董华军, 赵鸿飞, 向川, 等. 真空开关电弧形态几何特征量化实验研究[J]. 真空科学与技术学报, 2013, 33(7): 638-641. Dong Huajun, Zhao Hongfei, Xiang Chuan, et al.Digitization and on-line diagnosis of vacuum switching arc images[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(7): 638-641. [11] 董华军, 刘政君, 郭英杰, 等. 真空开关电弧等离子体几何形态研究[J]. 真空科学与技术学报, 2015, 35(12): 1408-1413. Dong Huajun, Liu Zhengjun, Guo Yingjie, et al.Time evolution of arc plasma geometric morphology in vacuum current breaker[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(12): 1408-1413. [12] 田小静, 冯雨, 郭英杰, 等. 基于小波变换和形态学细化算法的真空电弧形态检测[J]. 电工技术学报, 2015, 30(11): 110-114. Tian Xiaojing, Feng Yu, Guo Yingjie, et al.Morphological detection of vacuum switching arc based on wavelet transform and morphology edge thinning[J]. Transactions of China Electrotechnical Society, 2015, 30(11): 110-114. [13] 王静红, 刘教民. 基于双目立视技术的开关电弧图像处理[J]. 电工技术学报, 2011, 26(1): 86-91. Wang Jinghong, Liu Jiaomin.Switching arc image processing based on binocular stereo vision[J]. Transactions of China Electrotechnical Society, 2011, 26(1): 86-91. [14] 刘向军, 李炜荣, 谢宝河. 触头电弧图像面积与电弧功率及其关系[J]. 电工技术学报, 2015, 30(1): 120-126. Liu Xiangjun, Li Weirong, Xie Baohe.Arc image area and arc power of contacts and their correlation[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 120-126. [15] 翟国富, 薄凯, 李庆楠, 等. 直流电弧运动过程中重击穿现象及机理研究[J]. 电工技术学报, 2016, 31(11): 104-113. Zhai Guofu, Bo Kai, Li Qingnan, et al.Research on restriking phenomena and mechanism during DC arc motion process[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 104-113. [16] 韩思奇, 王蕾. 图像分割的阈值法综述[J]. 系统工程与电子技术, 2002,24(6): 91-94. Han Siqi, Wang Lei.A survey of thresholding methods for image segmentation[J]. Systems Engineering and Electronics, 2002, 24(6): 91-94. [17] 吴一全, 宋昱, 周怀春. 基于灰度熵多阈值分割和SVM的火焰图像状态识别[J]. 中国电机工程学报, 2013, 33(20): 66-73. Wu Yiquan, Song Yu, Zhou Huaichun.State identification of boiler combustion flame images based on gray entropy multiple thresholding and support vector machine[J]. Proceedings of the CSEE, 2013, 33(20): 66-73. [18] 艾建勇, 金立军. 基于紫外图像的接触网棒瓷绝缘子污秽状态检测[J]. 电工技术学报, 2016, 31(10): 112-118. Ai Jianyong, Jin Lijun.Rod porcelain insulator filth state detection of catenary based on ultraviolet image[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 112-118. [19] 潘喆, 吴一全. 二维Otsu图像分割的人工鱼群算法[J]. 光学学报, 2009, 29(8): 2115-2121. Pan Zhe, Wu Yiquan.The two-dimensional Otsu thresholding based on fish-swarm algorithm[J]. Acta Optica Sinica, 2009, 29(8): 2115-2121. [20] 朱邵成, 高清维, 卢一相, 等. 基于频率调谐的绝缘子识别与定位[J]. 电工技术学报, 2018, 33(23): 5573-5580. Zhu Shaocheng, Gao Qingwei, Lu Yixiang, et al.Identification and location of insulator string based on frequency-tuned[J]. Transactions of China Electrotechnical Society, 2018: 33(23): 5573-5580. [21] 周封, 任贵新. 基于颜色空间变量的输电线图像分类及特征提取[J]. 电力系统保护与控制, 2018, 46(5): 89-98. Zhou Feng, Ren Guixin.Image classification and feature extraction of transmission line based on color space variable[J]. Power System Protection and Control, 2018, 46(5): 89-98. [22] 施兢业, 刘俊. 基于改进区域生长法的电力设备红外图像分割[J]. 光学技术, 2017, 43(4): 381-384. Shi Jingye, Liu Jun.Mentation based on modified region growing algorithm[J]. Optical Technique, 2017, 43(4): 381-384. [23] 卢志茂, 范冬梅, 陈炳才, 等. 一种基于数据竞争的高分辨率图像的聚类分割算法[J].中国科学: 信息科学, 2012, 42(9): 1147-1157. Lu Zhimao, Fan Dongmei, Chen Bingcai, et al.A data competition based clustering algorithm for large image segmentation[J]. Chinese Scieme: Infornaticon, 2012, 42(9): 1147-1157. [24] 杨翠茹. 基于纹理特征的绝缘子检测方法[J].电气技术, 2010, 11(7): 46-52. Yang Cuiru.Detection method for insulators based on texture features[J]. Electrical Technology, 2010, 11(7): 46-52. [25] 郭凤仪, 邓勇, 王智勇, 等. 基于灰度-梯度共生矩阵的串联故障电弧特征[J].电工技术学报, 2018, 33(1): 71-81. Guo Fengyi, Deng Yong, Wang Zhiyong, et al.Series arc fault characteristics based on gray level-gradient co-occurrence matrix[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 71-81. [26] 陈焕栩, 解浩, 张建文, 等. 基于灰度共生矩阵纹理特征的局部放电模式识别[J]. 电力系统保护与控制, 2018, 46(5): 25-30. Chen Huanxu, Xie Hao, Zhang Jianwen, et al.Partial discharge pattern recognition based on texture feature of gray level co-occurrence matrix[J]. Power System Protection and Control, 2018, 46(5): 25-30. [27] 王红梅, 亓子龙. 基于人工鱼群优化的自适应脉冲耦合神经网络图像融合[J]. 光电子·激光, 2017, 28(4): 427-432. Wang Hongmei, Qi Zilong.A novel image fusion algorithm using adaptive PCNN based on artificial fish swarm optimization[J]. Journal of Optoelectronics·Laser, 2017, 28(4): 427-432. [28] 王博, 万磊, 李晔, 等. 基于自适应脉冲耦合神经网络的水下激光图像分割方法[J]. 光学学报, 2015, 35(4): 0410004-1-10. Wang Bo, Wan Lei, Li Ye, et al. Underwater laser image segmentation method based on adaptive pulse coupled neural networks[J]. Acta Optica Sinica, 2015, 35(4): 0410004-1-10.