Numerical Simulation for Magnetostatic Problems Based on A-λMixed Finite Element Method
Jiang Peng1, Li Jing1, Zhang Qun2, Luo Linshan3, Guan Zhenqun1
1. State Key Laboratory of Structural Analysis for Industrial Equipment Department of EngineeingMechanicsDalian University of Technology Dalian 116024 China; 2. INTESIM (Dalian) Co. Ltd Dalian 116023 China; 3. Anhui Electric Power Transmission and Transformation Engineering Company Hefei 230001 China
Abstract:This paper proposes to adopt mixed finite element method to eliminate spurious solution in simulatingmagnetostatic problems. By introducing a scalar Lagrange multiplier, Coulomb gauge is incorporated into magnetic vector potential formulation based on constrained variational principle, leading toA-λ mixed formulation. Furthermore, the gradient of the scalar Lagrange multiplier is identified as the incompatible component of exciting current source. By means of Newton-Raphson method, iterative strategyis established for material nonlinearity problems. Edge elements are employed to discretize magnetic vector potential, and nodal elements are employed to discretize Lagrange multiplier. By augmented Lagrange multiplier technique, the saddle point problem arising from mixed finite element discretization can be transferred to an equivalent problem whichcan be iteratively solved by Uzawa method. Compared with conventional nodal element and edge element, the mixed element can suppress potential spurious solutions, and obtain a more accurate solution.
江鹏, 李敬, 张群, 罗林山, 关振群. 基于A-λ混合单元法的静磁场数值求解[J]. 电工技术学报, 2018, 33(5): 1167-1176.
Jiang Peng, Li Jing, Zhang Qun, Luo Linshan, Guan Zhenqun. Numerical Simulation for Magnetostatic Problems Based on A-λMixed Finite Element Method. Transactions of China Electrotechnical Society, 2018, 33(5): 1167-1176.
[1] Jin Jianming.The finite element method in electromagnetics[M]. New York: John Wiley & Sons, 2014. [2] 何山, 王维庆, 张新燕, 等. 双馈风力发电机多种短路故障电磁场仿真研究[J]. 电力系统保护与控制, 2013, 41(12): 41-46. He Shan, Wang Weiqing, Zhang Xinyan, et al.Simulation study of multiple short-circuit fault electromagnetic field about DFIG in wind power[J]. Power System Protection and Control, 2013, 41(12): 41-46. [3] 宋福根, 林韩, 兰生. 特高压输电线路交叉跨越区域工频电场分布计算[J]. 电气技术, 2016, 17(1):6-10. Song Fugen, Lin Han, Lan Sheng.Accurate calculation of distribution of power frequency electric field for crossing UHV transmission lines[J]. Electrical Engineering, 2016, 17(1): 6-10. [4] 张献, 章鹏程, 杨庆新, 等. 基于有限元方法的电动汽车无线充电耦合机构的磁屏蔽设计与分析[J]. 电工技术学报, 2016, 31(1): 71-79. Zhang Xian, Zhang Pengcheng, Yang Qingxin, et al.Magnetic shielding design and analysis for wireless charging coupler of electric vehicles based on finite element method[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 71-79. [5] 唐任远, 吴东阳, 谢德馨. 单元级别并行有限元法求解工程涡流场的关键问题研究[J]. 电工技术学报, 2014, 29(5): 1-8. Tang Renyuan, Wu Dongyang, Xie Dexin.Research on the key problem of element by element parallel FEM applied to engineering eddy current analysis[J]. Transactions of China Electrotechnical Society, 2014, 29(5): 1-8. [6] 谢德馨, 朱占新, 吴东阳, 等. 大规模工程涡流场有限元计算的困境与展望[J]. 中国电机工程学报, 2015, 35(5): 1250-1257. Xie Dexin, Zhu Zhanxin, Wu Dongyang, et al.Plight and perspective of large-scale engineering eddy current field FEM computation[J]. Proceedings of the CSEE, 2015, 35(5): 1250-1257. [7] 夏慧, 刘国强, 黄欣, 等. 注入电流式磁声成像平面模型的逆问题研究[J]. 电工技术学报, 2017, 32(4):147-153. Xia Hui, Liu Guoqiang, Huang Xin, et al.The inverse problem study of plane model based on magneto-acoustic tomography with current injection[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 147-153. [8] 左曙光, 刘晓璇, 于明湖, 等. 永磁同步电机电磁振动数值预测与分析[J]. 电工技术学报, 2017, 32(1): 159-167. Zuo Shuguang, Liu Xiaoxuan, Yu Minghu, et al.Numerical prediction and analysis of electromagnetic vibration in permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 159-167. [9] Nakata T, Fujiwara K.Results for benchmark problem 10 (steel plates around a coil)[J]. COMPEL-the International Journal For Computation and Mathematics in Electrical and Electronic Engineering, 1990, 9(3): 181-190. [10] Preis K, Bardi I, Biro O, et al.Numerical analysis of 3D magnetostatic fields[J]. IEEE Transactions on Magnetics, 1991, 27(5): 3798-3803. [11] Meunier G.The finite element method for electromagnetic modeling[M]. New York: John Wiley & Sons, 2010. [12] Bíró O.Edge element formulations of eddy current problems[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 169(3): 391-405. [13] Golias N A, Tsiboukis T D.Magnetostatics with edge elements: a numerical investigation in the choice of the tree[J]. IEEE Transactions on Magnetics, 1994, 30(5): 2877-2880. [14] Fujiwara K, Nakata T, Ohashi H.Improvement of convergence characteristic of ICCG method for the A-φ method using edge elements[J]. IEEE Transactions on Magnetics, 1996, 32(3): 804-807. [15] Ren Z.Influence of the RHS on the convergence behaviour of the curl-curl equation[J]. IEEE Transactions on Magnetics, 1996, 32(3): 655-658. [16] Biro O, Preis I C, Vrisk G, et al.Computation of 3-D magnetostatic fields using a reduced scalar potential[J]. IEEE Transactions on Magnetics, 1993, 29(2): 1329-1332. [17] Li Yanlin, Sun Sheng, Dai Q I, et al.Vectorial solution to double curl equation with generalized coulomb gauge for magnetostatic problems[J]. IEEE Transactions on Magnetics, 2015, 51(8): 1-6. [18] Li Yanlin.Advanced finite element methodology for low-frequency and static electromagnetic modeling[D]. Hong Kong: The University of Hong Kong, 2015. [19] Brenner S, Scott R.The mathematical theory of finite element methods[M]. New York: Springer Science & Business Media, 2007. [20] 王勖成. 有限单元法[M]. 北京:清华大学出版社, 2003. [21] Brezzi F, Fortin M.Mixed and hybrid finite element methods[M]. New York: Springer Science & Business Media, 2012. [22] Fumio K.Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism[J]. Computer Methods in Applied Mechanics and Engineering, 1987, 64(1): 509-521. [23] Kikuchi F.Mixed formulations for finite element analysis of magnetostatic and electrostatic problems[J]. Japan Journal of Applied Mathematics, 1989, 6(2): 209-221. [24] Chen Zhiming, Du Qiang, Zou Jun.Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients[J]. SIAM Journal on Numerical Analysis, 2000, 37(5): 1542-1570. [25] Liu Na, Tobón L E, Zhao Yanmin, et al.Mixed spectral element method for 2D Maxwell’s eigenvalue problem[J]. Communications in Computational Physics, 2015, 17(2): 458-486. [26] Jiang Wei, Liu Na, Yue Yongqing, et al.Mixed finite-element method for resonant cavity problem with complex geometric topology and anisotropic lossless media[J]. IEEE Transactions on Magnetics, 2015, 52(2): 7400108. [27] Liu Na, Tobón L E, Zhao Yanmin, et al.Mixed spectral-element method for 3-D Maxwell's eigenvalue problem[J]. IEEE Transactions on Microwave Theory and Techniques, 2015, 63(2): 317-325. [28] Benzi M, Golub G H, Liesen J.Numerical solution of saddle point problems[J]. Acta numerica, 2005, 14: 1-137. [29] Hu Qiya, Zou Jun.Substructuring preconditioners for saddle-point problems arising from Maxwell’s equations in three dimensions[J]. Mathematics of Computation, 2004, 73(245): 35-61. [30] Arrow K J, Hurwicz L, Uzawa H, et al.Studies in linear and non-linear programming[M]. San Francisco: Standford University Press, 1958. [31] Amestoy P R, Duff I S, L’Excellent J Y. MUMPS: multifrontal massively parallel solver version 2.0[R]. Technical Report PA-98/02, CERFACS, Toulouse Cedex, France, 1998. [32] Zhang Qun, Cen Song.Multiphysics modeling: numerical methods and engineering applications: tsinghua university press computational mechanics series[M]. Amsterdam: Elsevier, 2015. [33] Albanese R, Rubinacci G.Magnetostatic field computations in terms of two‐component vector potentials[J]. International Journal for Numerical Methods in Engineering, 1990, 29(3): 515-532.