1. National Key Laboratory of Science and Technology on Vessel Integrated Power System Naval University of Engineering Wuhan 430033 China. 2. Department of Electrical Engineering University of Federal Defense Munich 85577 Germany. 3. Zhejiang Province Institute of Metrology Hangzhou 310000 China. 4. National Engineering Research Center for Silicon Steel Wuhan 430080 China
Abstract:As far as the discipline of our motor system is concerned, a series of remarkable achievements have been made in the major equipment building, which refers to such fields as energy and power, transportation, high-end manufacture. However, the continuous development in the field of defense and military industry puts forward higher demand on high-quality operational performance of the electromagnetic equipment. The demands include high power density, high reliability, high adaptability, low loss, and low vibration noise. Considering the applications required in ship equipment development, this paper has concluded the present technology status and raised some common basic scientific problems regarding precise measurement, characterization and application of soft magnetic material. Finally, the frontier development of the precise magnetic material modeling is prospected, and the weakness in the electrical engineering discipline in China is pointed out.
[1] 马伟明. 舰船动力发展的方向——综合电力系统[J]. 海军工程大学学报, 2002, 14(6): 1-5, 9. Ma Weiming. Integrated power system-trend of ship power development[J]. Journal of Naval University of Engineering, 2002, 14(6): 1-5, 9. [2] 马伟明. 舰船综合电力系统中的机电能量转换技术[J]. 电气工程学报, 2015, 10(4): 3-10. Ma Weiming. Electromechanical power conversion technologies in vessel integrated power system[J]. Journal of Electrical Engineering, 2015, 10(4): 3-10. [3] 王东, 马伟明, 郭云珺, 等. 基于非正弦供电方式的多相感应电动机建模[J]. 电工技术学报, 2010, 25(2): 6-14. Wang Dong, Ma Weiming, Guo Yunjun, et al. Modelling of multiphase induction motor with non- sinusoidal supply[J]. Transactions of China Electro- technical Society, 2010, 25(2): 6-14. [4] 陈世坤. 电机设计[M]. 北京: 机械工业出版社, 2000. [5] Li Yongjian, Zhu Jianguo, Yang Qingxin, et al. Study on rotational hysteresis and core loss under three- dimensional magnetization[J]. IEEE Transactions on Magnetics, 2011, 47(10): 3520-3523. [6] Yamamoto T, Ohya Y. Single sheet tester for measuring core losses and permeabilities in a silicon steel sheet[J]. IEEE Transactions on Magnetics, 1974, 10(2): 157-159. [7] Johannes Sievert. Two-dimensional magnetic measurements-history and achievements of the workshop[J]. Przeglad Elektrotechniczny, 2011, 87(9): 2-10. [8] 陈龙, 汪友华, 赵浛宇, 等. 超微晶合金旋转磁特性测量用励磁装置的设计与优化[J]. 电工技术学报, 2016, 31(22): 19-27. Chen Long, Wang Youhua, Zhao Hanyu, et al. Design and optimization of a magnetizer for high frequency rotational magnetic characterization for nanocry- stalline alloy[J]. Transactions of China Electro- technical Society, 2016, 31(22): 19-27. [9] GB/T 3655—2000 爱泼斯坦方圈测量电工钢片(带)磁性能的方法[S]. 北京: 国家质量技术监督局, 2000. [10] Preisach F. Über die magnetische Nachwirkung[J]. Zeitschrift fürPhysik, 1935(94): 277-302. [11] Jiles D C, Atherton D L. Theory of ferromagnetic hysteresis[J]. Journal of Magnetism and Magnetic Materials, 1986, 61(1-2): 48-60. [12] Stoner E C, Wohlfarth E P. A mechanism of magnetic hysteresis in heterogeneous alloys[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1948, 240(826): 599-642. [13] Bertotti G. General properties of power losses in soft ferromagnetic materials[J]. IEEE Transactions on Magnetics, 1988, 24(1): 621-630. [14] Lin D, Zhou P, Fu W N, et al. A dynamic core loss model for soft ferromagnetic and power ferrite materials in transient finite element analysis[J]. IEEE Transactions on Magnetics, 2004, 40(2): 1318-1321. [15] Enokizono M, Shimoji H, Horibe T. Loss evaluation of induction motor by using magnetic hysteresis E&S model[J]. IEEE Transactions on Magnetics, 2002, 38(5): 2379-2381. [16] 程志光, 高桥则雄, 博扎德·弗甘尼. 电气工程电磁热场模拟与应用[M]. 北京: 科学出版社, 2009. [17] Norio Takahashi, Masayuki Morishita, Daisuke Miyagi, et al. Examination of magnetic properties of magnetic materials at high temperature using a ring specimen[J]. IEEE Transactions on Magnetics, 2010, 46(2): 548-551. [18] Miyagi D, Otome D, Nakano M, et al. Measurement of magnetic properties of nonoriented electrical steel sheet at liquid nitrogen temperature using single sheet tester[J]. IEEE Transactions on Magnetics, 2010, 46(2): 314-317. [19] Rasilo P, Singh D, Aydin U, et al. Modeling of hysteresis losses in ferromagnetic laminations under mechanical stress[J]. IEEE Transactions on Magnetics, 2016, 52(3): 7300204. [20] Vincent Maurel, Ossart F, Rene Billardon. Residual stresses in punched laminations: phenomenological analysis and influence on the magnetic behavior of electrical steels[J]. Journal of Applied Physics, 2003, 93(10): 7106-7108. [21] Van Riesen D, Monzel C, Kaehler C, et al. iMOOSE—an open-source environment for finite- element calculations[J]. IEEE Transactions on Magnetics, 2004, 40(2): 1390-1393. [22] Zheng W, Cheng Z. An inner-constrained separation technique for 3D finite element modeling of GO silicon steel laminations[J]. IEEE Transactions on Magnetics, 2012, 48(8): 2277-2283. [23] Kurose H, Miyagi D, Takahashi N, et al. 3-D eddy current analysis of induction heating apparatus considering heat emission, heat conduction, and temperature dependence of magnetic characteri- stics[J]. IEEE Transactions on Magnetics, 2009, 45(3): 1847-1850. [24] Miyagi D, Maeda N, Ozeki Y, et al. Estimation of iron loss in motor core with shrink fitting using FEM analysis[J]. IEEE Transactions on Magnetics, 2009, 45(3): 1704-1707. [25] Ossart F, Hug E, Hubert O, et al. Effect of punching on electrical steels: experimental and numerical coupled analysis[J]. IEEE Transactions on Magnetics, 2000, 36(5): 3137-3140. [26] Hameyer K, Driesen J, De Gersem H, et al. The classification of coupled field problems[J]. IEEE Transactions on Magnetics, 1999, 35(3): 1618-1621. [27] 杨庆新, 李永建. 先进电工磁性材料特性与应用发展研究综述[J]. 电工技术学报, 2016, 31(20): 1-12. Yang Qingxin, Li Yongjian. Characteristics and developments of advanced magnetic materials in electrical engineering: a review[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 1-12. [28] 张宁, 李琳, 魏晓光. 非正弦激励下磁心损耗的计算方法及实验验证[J]. 电工技术学报, 2016, 31(17): 224-232. Zhang Ning, Li Lin, Wei Xiaoguang. Calculation method and experimental verification of core losses under non-sinusoidal excitation[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 224- 232. [29] Li Yongjian, Zhu Jianguo, Yang Qingxin, et al. Measurement of soft magnetic composite material using an improved 3-D tester with flexible excitation coils and novel sensing coils[J]. IEEE Transactions on Magnetics, 2010, 46(6): 1971-1974. [30] Zhao Zhigang, Liu Fugui, Cheng Zhiguang, et al. Measurements and calculation of core-based B-H curve and magnetizing current in DC-biased trans- formers[J]. IEEE Transactions on Applied Super- conductivity, 2010, 20(3): 1131-1134. [31] Zhu L, Wang B, Yan R, et al. Electromagnetic vibration of motor core including magnetostriction under different rotation speeds[J]. IEEE Transactions on Magnetics, 2016, 52(3): 1-4. [32] 李慧奇, 李晓孟, 李金忠, 等. 计及铁心损耗和磁滞效应改进的变压器模型[J]. 电工技术学报, 2016, 31(21): 196-202. Li Huiqi, Li Xiaomeng, Li Jinzhong, et al. An improved transformer model considering of the losses and hysteresis of the core[J]. Transactions of China Electrotechnical Society, 2016, 31(21): 196-202. [33] Cheng Z, Hao R, Takahashi N, et al. Engineering- oriented benchmarking of problem 21 family and experimental verification[J]. IEEE Transactions on Magnetics, 2004, 40(2): 1394-1397. [34] Zurek S, Marketos P, Meydan T, et al. Use of novel adaptive digital feedback for magnetic measurements under controlled magnetizing conditions[J]. IEEE Transactions on Magnetics, 2005, 41(11): 4242-4249.