Abstract:Wind and solar hybrid power generation is widely used in agricultural and pastoral areas. In current applications, each system uses independent inverters, which requires higher cost and energy consumption. In this paper, a common DC bus scheme with dual Boost-Buck based single inverter structure was proposed, to realize wind and solar hybrid power generation. The proposed scheme can reduce cost and energy consumption. Firstly, topological structure and circuit of wind-solar-storage cogeneration system were designed based on V2 controlled double Boost-Buck converter. Hence the constant voltage value control can be achieved when the input voltage varies in a wide range. At the same time, voltage slope compensation method was used to suppress the self-excited oscillation of Boost-Buck circuit. Secondly, a series of control strategies were designed to improve storage stability, including stabilizing fluctuation of wind-solar, nine zoning following load, fuzzy charging and discharging. The seamless abutment between wind-solar-storage power and inverter was achieved. Thirdly, the benefit evaluation on the power consumption reduction of abandoned wind-solar was carried out. Finally, the software and hardware device were developed, according to the control modes of distribution grid and isolated island off-grid. The test and simulation were carried out. The output current of inverter shows good static and dynamic performance, stability and reliability, as well as better cost economy.
希望·阿不都瓦依提, 晁勤, 王筱. 基于V2控制方法双Boost-Buck单一逆变器的风光储分布并网/孤岛离网控制模式[J]. 电工技术学报, 2016, 31(22): 194-204.
Xiwang·Abuduwayiti, Chao Qin, Wang Xiao. The Control Mode of Distribution Grid/Off-Grid of Wind-Solar-Storage with Double Boost-Buck Converter Single Inverter Based on V2 Control Method. Transactions of China Electrotechnical Society, 2016, 31(22): 194-204.
[1] Nehrir M H, Wang C, Strunz K, et al. A review of hybrid renewable/alternative energy systems for electric powergeneration[J]. Sustainable Energy, 2011, 2(4): 392-403. [2] 刘杨华, 吴政球, 涂有庆, 等. 分布式发电及其并网技术综述[J]. 电网技术, 2008, 32(15): 71-75. Liu Yanghua, Wu Zhengqiu, Tu Youqing, et al. A survey on distributed generation and its networking technology[J]. Power System Techonology, 2008, 32(15): 71-75. [3] Blaa Bjerg F, Teodorescu R, Liserre M, et al. Overview of control and grid synchronization for distributed power generation systems[J]. IEEE Transactions on Industrial Electronics, 2006, 53(5): 1398-1409. [4] 鲁志平, 王东. 一种新型光伏阵列模拟器的设计研究[J]. 电气技术, 2013, 14(6): 29-32. Lu Zhiping, Wang Dong. The new design of the photo-voltaic array simulator[J]. Electrical Engin- eering, 2013, 14(6): 29-32. [5] 沈梁, 毛西吟, 白熊. 未来智能电网的发展与应用[J]. 电气技术, 2013, 14(12): 1-4. Shen Liang, Mao Xiyin, Bai Xiong. Development and application of future smart grid[J]. Electrical Engin- eering, 2013, 14(12): 1-4 [6] 李昂, 罗珊. 储能装置在风光储联合发电系统中的应用[J]. 黑龙江电力, 2014(4): 149-151. Li Ang, Luo Shan. Application of energy storage device in wind-PV-ES hybrid power system[J]. Heilongjiang Electric Power, 2014(4): 149-151. [7] 夏天雷, 王林青, 江全元. 基于IEC 61970标准的风光储建模方案[J]. 电力系统自动化, 2015, 39(19): 9-14. Xia Tianlei, Wang Linqing, Jiang Quanyuan. IEC 61970 standard based modeling scheme of wind power, photovoltaic power, energy storage[J]. Auto- mation of Electric Power Systems, 2015, 39(19): 9-14. [8] 胡永强, 刘晨亮, 赵书强, 等. 基于模糊相关机会规划的储能优化控制[J]. 电力系统自动化, 2014, 38(6): 20-25. Hu Yongqiang, Liu Chenliang, Zhao Shuqiang, et al. Optimal control of energy storage based on fuzzy correlated-chance programming[J]. Automation of Electric Power Systems, 2014, 38(6): 20-25. [9] 杨珺, 张建成, 周阳, 等. 针对独立风光发电中混合储能容量优化配置研究[J]. 电力系统保护与控制, 2013, 41(4): 38-44. Yang Jun, Zhang Jiancheng, Zhou Yang, et al. Research on capacity optimization of hybrid energy storage system in stand-alone wind/PV power generation system[J]. Power System Protection and Control, 2013, 41(4): 38-44. [10] 刘畅, 张庆范, 高金波. 风-光-柴互补发电逆变系统的研究与设计[C]//第十七届全国电源技术年会论文集, 2015: 360-362. [11] 王凤岩, 许建平, 许峻峰. V 2 控制Buck变换器分析[J]. 中国电机工程学报, 2005, 25(12): 68-72. Wang Fengyan, Xu Jianping, Xu Junfeng. Model and analysis of V 2 controlled Buck converter[J]. Pro- ceedings of the CSEE, 2005, 25(12): 68-72. [12] 周国华, 许建平, 米长宝, 等. V 2 C控制Buck变换器稳定性分析[J]. 电工技术学报, 2011, 26(3): 88-95. Zhou Guohua, Xu Jianping, Mi Changbao, et al. Stability analysis of V 2 C controlled Buck con- verter[J]. Transactions of China Electrotechnical Socirty, 2011, 26(3): 88-95. [13] 罗全民, 周雒维, 卢伟国, 等. V 2 -OCC控制Buck变换器[J]. 电工技术学报, 2008, 23(12): 78-98. Luo Quanmin, Zhou Luowei, Lu Weiguo, et al. V 2 -OCC controlled Buck converter[J]. Transactions of China Electrotechnical Society, 2008, 23(12): 78-98. [14] 刘苗, 洪峰, 尹培培, 等. 复合型级联双Buck飞跨电容五电平逆变器[J]. 电工技术学报, 2015, 30(18): 35-41. Liu Miao, Hong Feng, Yin Peipei, et al. A hybrid cascaded dual Buck flying-capacitor five-level inverter[J]. Transactions of China Electrotechnical Socirty, 2015, 30(18): 35-41. [15] 方天治, 朱恒伟, 阮新波. 模块化输入串联输出串联逆变器系统的控制策略[J]. 电工技术学报, 2015, 30(20): 85-92. Fang Tianzhi, Zhu Hengwei, Ruan Xinbo. Control strategy for modular input-series-output-series inver- ters system[J]. Transactions of China Electro- technical Socirty, 2015, 30(20): 85-92. [16] 杨晓光, 姜龙斌, 冯俊博, 等. 一种用于光伏逆变器的新型功率解耦电路[J]. 电工技术学报, 2015, 30(16): 42-48. Yang Xiaoguang, Jiang Longbin, Feng Junbo, et al. A new power decoupling circuit for photovoltaic inverter[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 42-48. [17] 杨琦, 张建华, 刘自发, 等. 风光互补混合供电系统多目标优化设计[J]. 电力系统自动化, 2009, 33(17): 86-90. Yang Qi, Zhang Jianhua, Liu Zifa, et al. Multi- objective optimization of hybrid PV/Wind power supply system[J]. Automation of Electric Power Systems, 2009, 33(17): 86-90. [18] 史君海, 朱新坚, 仲志丹. 风能一太阳能互补独立发电系统设计优化与分析[J]. 可再生能源, 2007, 25(4): 6-9. Shi Junhai, Zhu Xinjian, Zhong Zhidan. Analysis and techno-economic optimization of the small PV-wind stand-alone power system[J]. Renewable Energy Resources, 2007, 25(4): 6-9. [19] 陈汝昌, 陈飞, 张帆, 等. 新能源电网中微电源并网控制策略研究[J]. 电力系统保护与控制, 2015, 43(12): 55-60. Chen Ruchang, Chen Fei, Zhang Fan, et al. Control strategies for grid-connected microsource in new energy power systems[J]. Power System Protection and Control, 2015, 43(12): 55-60. [20] 徐大明, 康龙云, 曹秉刚. 风光互补独立供电系统的优化设计[J]. 太阳能学报, 2006, 27(9): 919-922. Xu Daming, Kang Longyun, Cao Binggang. Optimal design of stand alone hybrid wind/PV power systems[J]. Acta Energiae Solaris Sinica, 2006, 27(9): 919-922. [21] 梅生伟, 王莹莹, 刘锋. 风-光-储混合电力系统的博弈论规划模型与分析[J]. 电力系统自动化, 2011, 35(20): 13-18. Mei Shengwei, Wang Yingying, Liu Feng. A game theory based planning modeland analysis for hybrid power system with wind generators-photovoltaic panels-storage batteries[J]. Automation of Electric Power Systems, 2011, 35(20): 13-18. [22] 张蕴昕, 孙运全. 混合储能在风光互补微网中的控制策略[J]. 电力系统保护与控制, 2015, 43(21): 93-98. Zhang YunXin, Sun Yunquan. Control strategy of a hybrid energy storage in wind-solar hybrid generation microgrid[J]. Power System Protection and Control, 2015, 43(21): 93-98. [23] 刘梦璇, 郭力, 王成山, 等. 风光柴储孤立微电网系统协调运行控制策略设计[J]. 电力系统自动化, 2012, 36(15): 19-24. Liu Mengxuan, Guo Li, Wang Chengshan, et al. A coordinated operating control strategy for hybrid isolated microgrid including wind power, photo- voltaic system, diesel generator, and battery storage[J]. Automation of Electric Power Systems, 2012, 36(15): 19-24. [24] 麻常辉, 潘志远, 刘超, 等. 基于自适应下垂控制的风光储微网调频研究[J]. 电力系统保护与控制, 2015, 43(23): 21-27. Ma Changhui, Pan Zhiyuan, Liu Chao, et al. Frequency regulation research of wind-PV-ES hybrid micro-grid system based on adaptive droop control[J]. Power System Protection and Control, 2015, 43(23): 21-27. [25] 朱兰, 严正, 杨秀, 等. 风光储微网系统蓄电池容量优化配置方法研究[J]. 电网技术, 2012, 36(12): 26-31. Zhu Lan, Yan Zheng, Yang Xiu, et al. Optimal configuration of battery capacity in microgrid composed of wind power and photovoltaic generation with energy storage[J]. Power System Technology, 2012, 36(12): 26-31.