The Impact of the Parallel Resonant Capacitance to the Magnetic Resonance Coupling Wireless Power Transmission System
Yuan Shun1,2, Jia Hongguang3, Liu Jinsong4, Song Yundong4, Ma Wei3
1. Shenyang University of Technology Shenyang 110870 China 2. National Energy Administration Beijing 100824 China 3. Shanghai management office, Grid Operation Branch of State Grid Corporation shanghai 201402 china 4. Electric Power Research institute Liaoning Electric Power Company Limited Shenyang 110006 China
Abstract:Resonant coil is the important part of the electromagnetic resonance coupling wireless power transmission system, and how to design and optimize the resonant coil is always a difficult problem to study. This paper analysis the system with or without parallel resonant capacitor effects on the power transmission distance, obtained the relationship between parallel resonant capacitance and the transmission distance, which can be designed to achieve the best effect of power transmission according to the actual situation. According to the research conclusion, a magnetic resonance mode of wireless power transmission system equipment was designed in this paper, achieving approximately 8.1W of energy transmission at distance of 50cm.
苑舜, 贾红光, 刘劲松, 宋云东, 马伟. 并联谐振电容对电磁谐振耦合无线电能传输系统的影响[J]. 电工技术学报, 2013, 28(2增): 51-54.
Yuan Shun, Jia Hongguang, Liu Jinsong, Song Yundong, Ma Wei. The Impact of the Parallel Resonant Capacitance to the Magnetic Resonance Coupling Wireless Power Transmission System. Transactions of China Electrotechnical Society, 2013, 28(2增): 51-54.
[1] Tesla N. Apparatus for transmitting electrical energy[P]. U. S., 1/119, 732, 1914-12-1. [2] Brown W C. The History of Power Transmission by Radio Waves[J]. IEEE Transaction on Microwave Theory and Techniques, 1984, 32(9): 1230-1242. [3] 宋显锦, 韩如成, 宋晓鹏. 无线电能传输的发展历史与应用现状[J]. 山西财经大学学报, 2010, 13(1) : 104-105. Song Xianjin, Han Rucheng, Song Xiaopeng. The history and development of wireless power transmission[J]. Journal of Shanxi Finance and Economics University, 2010, 13(1): 104-105. [4] 张茂春, 王进华, 石亚伟. 无线电能传输技术综述[J]. 重庆工商大学学报(自然科学版), 2009, 26(5) : 485-488. Zhang maoChun, Wang Jinhua, Shi Yawei. Journal of Chongqing Technology and Business University (Natural Science Edition)[J]. 2009, 26(5): 485-488. [5] 杨庆新, 陈海燕, 徐桂芝, 等. 无接触电能传输技术的研究进展[J], 电工技术学报, 2010, 25(7): 6-13. Yang Qingxin, Chen Haiyan, Xu Guizhi, et al. Research progressin in contactless power transmission technology[J]. Transactions of China Electrotechnical Society, 2010, 25(7): 6-13. [6] Kurs A, Karalis A, Moffatt R, et al. Wireless power transfer via strongly coupled magnetic resonances[J]. Science, 2007, 317(5834): 83-86. [7] 傅文珍, 张波, 丘东元. 自谐振线圈耦合式电能无线传输的最大效率分析与设计[J]. 中国电机工程学报, 2009, 29(18): 21-26. Fu Wenzhen, Zhang Bo, Qiu Dongyuan, et al. Maximum efficiency analysis and design of self-r esonance coupling coils for wireless power transmission system[J]. Proceedings of the CSEE, 2009, 29(18): 21-26. [8] 黄辉, 黄学良, 谭林林, 等. 基于磁场谐振耦合的无线电力传输发射及接收装置的研究[J]. 电工电能新技术, 2011, 30(1): 32-36. Huang Hui, Huang Xueliang, Tan Linlin, et al. Research on transmitter and receiver of wireless power transmission based on magnetic resonance coupling[J]. Advanced Technology of Electrical Engineering and Energy. 2011, 30(1): 32-35. [9] Haus H A, Huang W, Coupled-mode theory[J], Proceedings of the IEEE, 1991, 79(10): 1505-1508. [10] 森荣二. LC滤波器的设计与制作[M]. 北京: 科学出版社, 2005.