Abstract:The widespread application of power-electronic loads has led to increasing harmonic pollution in power system. Harmonic detection is considered the most crucial part for preventing the influence of harmonic. In this paper, an effective procedure based on radial basis function neural network has been proposed to detect the amplitude and phase of harmonic. By comparing with BP neural network by using Matlab simulation, it is shown that the presented solution has more accurate and less training time, so it could be applied in power system harmonic detection.
肖建平, 李生虎, 吴可汗, 何怡刚. 一种新的基于神经网络的电力系统谐波检测方法研究[J]. 电工技术学报, 2013, 28(2增): 345-348.
Xiao Jianping, Li Shenghu, Wu Kehan, He Yigang. A Novel Approach of Harmonic Detection in Power System Based on Neural Network. Transactions of China Electrotechnical Society, 2013, 28(2增): 345-348.
[1] 王兆安, 杨军, 刘进军, 谐波抑制和补偿[M]. 北京: 机械工业出版社, 2005. [2] 王群, 吴宁, 王兆安. 一种基于人工神经网络的电流谐波测量方法[J]. 电力系统自动化, 1998, 22(11): 35-39. Wang Qun, Wu Ning, Wang Zhaoan. A measuring approach of power harmonics based on artificial neural network[J]. Automation of Electric Power Systems, 1998, 22(11): 35-39. [3] Sachin K.Jain*, S.N.Singh.Harmonics estimation in emerging power system :Key issues and challenges[J]. Electric Power systems Research 81(2011)1754-1766. [4] 杨晓萍, 刘普森, 钟彦儒. 基于经验模式分解的有源滤波器谐波检测[J]. 电工技术学报, 2009, 24(5): 197-201. Yang Xiaoping, Liu Pusen, Zhong Yanru. Harmonic detection of active power filter based on empirical mode decomposition[J]. Transactions of China Electrotechnical Society, 2009, 24(5): 197-201. [5] 庞浩, 李东霞, 俎云霄, 等. 应用FFT进行电力系统谐波分析的改进算法[J]. 中国电机工程学报, 2003, 23(6): 49-54. Pang Hao, Li Dongxia, Zu Yunxiao, et al. An improved algorithm for harmonic analysis of power system using FFT technique[J]. Proceedings of the CESS, 2003, 23(6): 50-54. [6] 王彭, 周峰, 黄震宇, 等. 基于时域准同步的谐波和间谐波检测算法[J]. 仪器仪表学报, 2013, 34(2), 275-230. Wang Peng, Zhou Feng, Huang Zhenyu, et al. Harmonic and inter harmonic detection algorithm based on time-domain quasi-synchronous technique[J]. Chinese Journal of Scientific Instrument.2013, 34(2), 275-230. [7] 张 鹏, 李红斌. 一种基于离散小波变换的谐波分析方法[J]. 电工技术学报, 2012, 27(3): 252-259. Zhang Peng, Li Hongbin. A novel algorithm for harmonic analysis based on discrete wavelet transforms[J]. Transactions of China Electrotechnical Society, 2012, 27(3): 252-259. [8] 王公宝, 向东阳, 马伟明. 基于FFT和神经网络的非整数次谐波分析改进算法[J]. 中国电机工程学报, 2008, 28(4): 102-108. Wang Gongbao, Xiang Dongyang, Ma Weiming. Improved algorithm for non-integer harmonics analysis based on FFT algorithm and neural network[J]. Proceedings of the CSEE, 2008, 28(4): 102-108. [9] 付志红, 王好娜, 曹敏, 等, 采用BP神经网络的基波高精度检测方法[J]. 重庆大学学报, 2011.34(12): 61-66 Fu Zhigong, Wang Haona, Cao Min, et al. A high precision detecting method for fundamental using BP neural network[J]. Journal of Chongqing University (Natural Science Edition), 2011, 34(12): 61-66. [10] 汤胜清, 程小华, 一种基于多层前向神经网络的谐波检测方法[J], 中国电机工程学, 2006.26(18): 90-94 Tang Shengqing, Cheng Xiaohua. A harmonic measuring approach based on multilayered feed forward neural network[J]. Proceedings of the CSEE, 2006, 16(18): 90-94. 作者简介:肖建平 男, 1988年生, 硕士研究生, 研究方向为电能质量、电力系统谐波分析。李生虎 男, 1974年生, 教授, 博士生导师, 研究方向为电力系统运行与控制、柔性输电等。