An Improved Continuous Method to Calculate the Hopf Bifurcation Point in Small Disturbance Voltage Stability
Li Hongzhong1, You Daning2, Gao Yunhui3, Shen Li3, Wang Zhenxue3
1. Shanghai University of Electric Power Shanghai 200090 China; 2. Shandong Power Dispatching Centre Jinan 250001 China; 3. Qinhuangdao Power Supply Company Qinhuangdao 066000 China
Abstract:A continuous method to calculate the Hopf bifurcation in small disturbance is presented. The second-order sensitivities of the selected eigenvalues with respect to loads variation which have more perfect linear behavior are computed and used to determine the step size of the continuation method. For lightly loaded conditions, it is expected that a small variation in the load would result in a small variation in the operation point which is far away from the HB point. Therefore, the step size could be larger. On the other hand, when the operation point is close to the HB point, a smaller step should be defined otherwise the HB point may be overleaped.
李宏仲, 游大宁, 高云辉, 盛利, 王震学. 一种求解小扰动电压稳定Hopf分岔点的改进连续性方法[J]. 电工技术学报, 2013, 28(1增): 224-230.
Li Hongzhong, You Daning, Gao Yunhui, Shen Li, Wang Zhenxue. An Improved Continuous Method to Calculate the Hopf Bifurcation Point in Small Disturbance Voltage Stability. Transactions of China Electrotechnical Society, 2013, 28(1增): 224-230.
[1] 李宏仲, 程浩忠, 滕乐天, 等. 以简化直接法求解电力系统动态电压稳定Hopf分岔点[J]. 中国电机工程学报, 2006, 26(8): 28-32. Li Hongzhong, Cheng Haozhong, Teng Letian, et al. A direct method for computing Hopf bifurcation point in power system dynamic voltage stability[J]. Proceedings of the CSEE, 2006, 26(8): 28-32. [2] Feng Z, Ajjarapu V, Maratukulam D J. Identification of voltage collapse through direct equilibrium tracing[J]. IEEE Transactions Power Syst., 2000, 15(1): 342-349. [3] Canizares C A, Souza A C Z de, Quintana V H. Comparison of collapse[J]. IEEE Transactions on Power System, 1996, 11(3): 1441-1450. [4] Nino E E, Castro C A, Silva L C P da, et al. Continuation load flow using automatically determined branch megawatt losses as parameters[J]. IEE Proceedings: Generation, Transmission and Distribu- tion, 2006, 153(3): 300-308. [5] Souza A C Zambroni de, Lopes B I Lima, Guedes R B L, et al. Saddle-node index as Bounding value for Hopf bifurcations detection[J]. IEE Proceedings: Generation, Transmission and Distribution, 2005, 152(5): 737-742. [6] Wen Xiaoyu, Ajjarapu V. Application of a novel eigenvalue trajectory tracing method to identify both oscillatory stability margin and damping margin[J]. IEEE Transactions on Power System, 2006, 21(2): 817-824. [7] 孙宏斌, 李钦, 张明晔, 等. 基于动态潮流方程的连续潮流模型与方法[J]. 中国电机工程学报, 2011, 31(7): 77-82. Sun Hongbin, Li Qin, Zhang Mingye, et al. Continuation power flow method based on dynamic power flow equation[J]. Proceedings of the CSEE, 2011, 31(7): 77-82. [8] 赵晋泉, 张伯明. 连续潮流及其在电力系统静态稳定分析中的应用[J]. 电力系统自动化, 2005, 29(11): 91-97. Zhao Jinquan, Zhang Boming. Summarization of continuation power flow and its applications in static stability analysis of power system[J]. Automation of Electric Power Systems, 2005, 29(11): 91-97. [9] 赵晋泉, 江晓东, 张伯明. 一种在线电力系统静态稳定增强控制算法[J]. 中国电机工程学报, 2005, 25(8): 7-12. Zhao Jinquan, Jiang Xiaodong, Zhang Boming. An on-line enhancement control algorithm for Static stability in power system[J]. Proceedings of the CSEE, 2005, 25(8): 7-12. [10] 马平, 蔡兴国. 基于扩展潮流模型的电力系统电压稳定分析[J]. 中国电机工程学报, 2007, 27(28): 24-28. Ma Ping, Cai Xingguo. Power system voltage stability analysis using expanded power flow models[J]. Proceedings of the CSEE, 2007, 27(28): 24-28. [11] 熊宁, 程浩忠, 马则良, 等. 基于连续潮流的极限诱导分岔检测方法[J]. 电力系统自动化, 2008, 32 (18): 35-38. Xiong Ning, Cheng Haozhong, Ma Zeliang, et al. A method for detecting limit induced bifurcation based on continuation power flow[J]. Automation of Electric Power Systems, 2008, 32 (18): 35-38. [12] 赵晋泉, 王毅, 李可文, 等. 一种基于连续潮流的在线静态稳定综合评估方法[J]. 电力系统自动化, 2010, 34(4): 18-22. Zhao Jinquan, Wang Yi, Li Kewen, et al. An on-line voltage stability composite assessment method based on continuation power flow[J]. Automation of Electric Power Systems, 2010, 34(4): 18-22. [13] 王奇, 刘明波. 一种识别极限诱导分岔点的改进连续潮流算法[J]. 华南理工大学学报, 2008, 36(2), 133-138. Wang Qi, Liu Mingbo. An improved continuous power-flow algorithm for identifying limit-induced bifurcation point[J]. Journal of South China University of Technology, 2008, 36(2), 133-138. [14] 李华强, 刘亚梅, Yorino N. 鞍结分岔与极限诱导分岔的电压稳定性评估[J]. 中国电机工程学报, 2005, 25(24): 56-60. Li Huaqiang, Liu Yamei, Yorino N. Voltage stability assessment for saddle node bifurcation and limit induced bifurcation[J]. Proceedings of the CSEE, 2005, 25(24): 56-60. [15] 彭志炜. 基于分岔理论的电力系统电压稳定性的研究[D]. 杭州: 浙江大学, 1998. [16] Yuan Zhou, Ajjarapu V. A Fast Algorithm for identification and tracing of voltage and oscillatory stability margin[J]. Proceedings of the IEE, 2005, 93(5): 934-946 [17] Thomas Smed. Feasible eigenvalue sensitivity for large power system[J]. IEEE Transactions on Power Systems, 1993, 8(2): 555-562. [18] Hae-Kon Nam, Yong-Ku Kim, Kwan-Shik Shim, et al. A new eigen-sensitivity theory of augmented matrix and its applications to power system stability analysis[J]. IEEE Transactions on Power Systems, 2000, 15(1): 363-369. [19] Xiaoyu Wen, Ajjarapu V. Critical eigenvalue trajectory tracing for power system oscillatory stability assessment[C]. Power Energy Society General Meeting, IEEE, Denver, USA, 2004(12): 1883-1889. [20] Frequency domain analysis of low frequency oscillations in large electric power systems[P]. EPRI Tech. Rep. EL-726, Apr. 1978.