Abstract:This paper proposes a novel wireless power and data transmission (WPDT) system using double-sided LCC compensation topology. The power transmission circuit and the modulation, injection, extraction, and demodulation circuits for data transfer are analyzed. The function of each component in the system is explained in detail. The specific steps of system design are summarized. The mutual interference between power transfer and data transfer and the design rules to reduce the interference are discussed. A 100W WPDT prototype is built. The practically measured power transfer efficiency is 90.5%, and the data transmission rate is 119 kbit/s. Data transmission can work well even though the coupling coefficient is decreased by 60.2%. The practically measured interferences between power transfer and data transfer are quite small. The power transfer and data transfer are not affected by each other.
程海松, 姚友素, 王懿杰, 刘晓胜, 徐殿国. 基于双边LCC补偿的无线能量数据传输系统设计[J]. 电工技术学报, 2018, 33(zk2): 295-304.
Cheng Haisong, Yao Yousu, Wang Yijie, Liu Xiaosheng, Xu Dianguo. Design of a Wireless Power and Data Transmission System Using Double-Sided LCC Compensation Topology. Transactions of China Electrotechnical Society, 2018, 33(zk2): 295-304.
[1] 马皓, 周雯琪. 电流型松散耦合电能传输系统的建模分析[J]. 电工技术学报, 2005, 20(10): 70-75. Ma Hao, Zhou Wenqi.Modeling analysis of inductively coupled power transfer systems based on current source resonant converter[J]. Transactions of China Electrotechnical Society, 2005, 20(10): 70-75. [2] 苏玉刚, 张宁, 方少乾, 等. 同步整流技术在ICPT系统中的应用[J]. 电工技术学报, 2013, 28(12): 313-318. Su Yugang, Zhang Ning, Fang Shaoqian, et al.Application of synchronous rectifiers in inductive coupled power transfer system[J]. Transactions of China Electrotechnical Society, 2013, 28(12): 313-318. [3] 赵争鸣, 刘方, 陈凯楠. 电动汽车无线充电技术研究综述[J]. 电工技术学报, 2016, 31(20): 30-40. Zhao Zhengming, Liu Fang, Chen Kainan.New progress of wireless charging technology for electric vehicles[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 30-40. [4] 宋凯, 李振杰, 杜志江, 等. 变负载无线充电系统的恒流充电技术[J]. 电工技术学报, 2017, 32(13): 130-136. Song Kai, Li Zhenjie, Du Zhijiang, et al.Constant current charging technology for variable load wireless charging system[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 130-136. [5] Wu Jiande, Zhao Chongwei, Lin Zhengyu, et al.Wireless power and data transfer via a common inductive link using frequency division multi- plexing[J]. IEEE Transactions on Industrial Elec- tronics, 2015, 62(12): 7810-7820. [6] Boheemen E L V, Boys J T, Covic G A. Dual-tuning IPT systems for low bandwidth communications[C]// IEEE Conference on Industrial Electronics and Applications, Harbin, 2007: 586-591. [7] Son Y H, Jang B J.Simultaneous data and power transmission in resonant wireless power system[C]// IEEE Microwave Conference Proceedings, Seoul, 2014: 1003-1005. [8] Liu J Y, Tang K T.A novel wireless power and data transmission AC to DC converter for an implantable device[C]//35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, 2013: 1875-1878. [9] Lin Y P, Yeh C Y, Huang P Y, et al.A battery-less, implantable neuro-electronic interface for studying the mechanisms of deep brain stimulation in rat models[J]. IEEE Transactions on Biomedical Circuits & Systems, 2016, 10(1): 98-112. [10] Hsu C H, Tseng S B, Hsieh Y J, et al.One-time- implantable spinal cord stimulation system pro- totype[J]. IEEE Transactions on Biomedical Circuits & Systems, 2011, 5(5): 490-498. [11] Bieler T, Perrottet M, Nguyen V, et al.Contactless power and information transmission[J]. IEEE Transa- ctions on Industry Applications, 2002, 38(5): 1266-1272. [12] Wang Guoxing, Wang Peijun, Tang Ying, et al.Analysis of dual band power and data telemetry for biomedical implants[J]. IEEE Transactions on Biomedical Circuits & Systems, 2012, 6(3): 208-215. [13] Simard G, Sawan M, Massicotte D.High-speed OQPSK and efficient power transfer through inductive link for biomedical implants[J]. IEEE Transactions on Biomedical Circuits & Systems, 2010, 4(3): 192-200. [14] Wang Yijie, Yao Yousu, Guan Yueshi, et al.A novel modulation and demodulation method for wireless power and data transmission[C]//IEEE Transportation Electrification Asia-Pacific, Harbin, 2017: 1-6. [15] 卢文冰, 张慧, 赵雄文, 等. 网络参数对低压宽带电力线信道的影响[J]. 电工技术学报, 2016, 31(增刊1): 221-229. Lu Wenbing, Zhang Hui, Zhao Xiongwen, et al.The effect of network parameters for low-voltage broad- band power line channels[J]. Transactions of China Electrotechnical Society, 2016, 31(S1): 221-229. [16] 梁秀敏, 于鹏. 基于低压电力线载波通信的耦合技术电路研究[J]. 装备制造技术, 2009(3): 35-37. Liang Xiumin, Yu Peng.Study on coupling tech- nology circuit based on the low-voltage power line carrier communication[J]. Equipment Manufacturing Technology, 2009(3): 35-37. [17] Liu Yang, Wang Zhihui, Tang Chunsen, et al.Study on signal reverse transmission in ICPT system[J]. Advanced Technology of Electrical Engineering & Energy, 2014, 33(4): 6-10. [18] Dai Xin, Du Renjie, Tang Chunsen, et al.A 2FSK-based high-speed signal transmission method for ICPT system[J]. Journal of Southwest Jiaotong University, 2013, 48(5): 892-897. [19] Li Siqi, Li Weihan, Deng Junjun, et al.A double-sided LCC compensation network and its tuning method for wireless power transfer[J]. IEEE Transactions on Vehicular Technology, 2015, 64(6): 2261-2273. [20] Zhu Qingwei, Wang Lifang, Guo Yanjie, et al.Applying LCC compensation network to dynamic wireless EV charging system[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6557-6567. [21] Zhang Wei, Mi C C.Compensation topologies of high-power wireless power transfer systems[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4768-4778.