| [1] Li Tao, Li Yongli, Zhu Yuchen.Research on the voltage supporting capability of multi-VSC-HVDC subsystems operation strategy to receiving-end LCC-HVDC network in weak AC grid[J]. CES Transactions on Electrical Machines and Systems, 2023, 7(1): 11-20.
[2] 刘欣, 袁易, 王利桐, 等. 柔性直流输电系统三端口混合参数建模及其稳定性分析[J]. 电工技术学报, 2024, 39(16): 4968-4984.
Liu Xin, Yuan Yi, Wang Litong, et al.Three-port hybrid parameter modeling and stability analysis of MMC-HVDC system[J]. Transactions of China Electrotechnical Society, 2024, 39(16): 4968-4984.
[3] 欧阳金鑫, 陈纪宇, 李昂, 等. 兼顾直流电压安全与无功支撑的柔性直流输电故障穿越控制[J]. 电工技术学报, 2024, 39(19): 6129-6144.
Ouyang Jinxin, Chen Jiyu, Li Ang, et al.Fault ride-through control method for VSC-HVDC balancing between DC voltage security and reactive power support[J]. Transactions of China Electrotechnical Society, 2024, 39(19): 6129-6144.
[4] 肖晃庆, 朱琼海, 黄莹, 等. 用于大规模新能源架空线路送出的储能型柔性直流输电系统[J]. 电力系统自动化, 2025, 49(8): 40-53.
Xiao Huangqing, Zhu Qionghai, Huang Ying, et al.Flexible DC transmission system with energy storage system for large-scale renewable energy delivery through overhead line[J]. Automation of Electric Power Systems, 2025, 49(8): 40-53.
[5] Song Guobing, Yan Jifei, Chang Zhongxue, et al.A frequency-domain fault location method for underground cables in MMC-HVdc systems[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1-12.
[6] 杨明嘉, 夏成军, 赖胜杰, 等. 基于线芯-护层过渡电阻无功特性的交叉互联电缆故障测距[J]. 电工技术学报, 2024, 39(5): 1372-1389.
Yang Mingjia, Xia Chengjun, Lai Shengjie, et al.Fault location of cross-connected cables based on reactive power characteristics of core-sheath transition resistance[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1372-1389.
[7] 刘乐, 陈旭明, 康小宁, 等. 基于反行波波前瞬时能量谱的深远海风电经柔直并网系统的双端行波故障测距方法[J]. 电力自动化设备, 2025, 45(3): 86-94.
Liu Le, Chen Xuming, Kang Xiaoning, et al.Dual-end traveling wave fault location method for deep-sea offshore wind-integrating system via MMC-HVDC using instantaneous energy spectrum of wavefront of backward traveling wave[J]. Electric Power Automation Equipment, 2025, 45(3): 86-94.
[8] Guo Chunsheng, Liao Jianquan, Wang Yuhong, et al.Fault location and protection for metallic return HVdc grid based on natural frequency extraction of modal derivative current[J]. IEEE Transactions on Instrumentation and Measurement, 2025, 74: 1-16.
[9] 宋国兵, 侯俊杰, 郭冰. 基于主动探测式的混合MMC直流输电系统单端量故障定位[J]. 电网技术, 2021, 45(2): 730-740.
Song Guobing, Hou Junjie, Guo Bing.Single-ended fault location of hybrid MMC-HVDC system based on active detection[J]. Power System Technology, 2021, 45(2): 730-740.
[10] 周志通, 陈永琦, 黄璜, 等. 一种基于频率选择的输电线路故障行波测距方法[J]. 电气技术, 2024, 25(2): 31-36+44.
Zhou Zhitong, Chen Yongqi, Huang Huang, et al. A method of fault location for transmission line based on frequency selection[J]. Electrical Engineering, 2024, 25(2): 31-36+44.
[11] 束洪春, 杨竞及, 张广斌. 高压直流输电线路的双端行波频差比值故障测距[J]. 中国电机工程学报, 2022, 42(18): 6715-6727.
Shu Hongchun, Yang Jingji, Zhang Guangbin.A novel fault-location method for HVDC transmission lines based on the ratio of two-terminal traveling wave frequency difference[J]. Proceedings of the CSEE, 2022, 42(18): 6715-6727.
[12] 郑雨霖, 郭谋发, 陈方旭, 等. 不依赖同步对时的配电网接地故障双端行波测距方法及其误差分析[J]. 电工技术学报, 2025, 40(15): 4860-4873.
Zheng Yulin, Guo Moufa, Chen Fangxu, et al.A double-terminal traveling wave grounding fault location scheme in distribution networks independent of time synchronization and its error analysis[J]. Transactions of China Electrotechnical Society, 2025, 40(15): 4860-4873.
[13] 梁远升, 徐征, 丁佳彦, 等. 基于复域暂态解析的柔性直流输电线路单端故障测距方法[J]. 电力系统自动化, 2024, 48(24): 155-165.
Liang Yuansheng, Xu Zheng, Ding Jiayan, et al.Single-ended fault location method for flexible DC transmission lines based on complex-domain transient analysis[J]. Automation of Electric Power Systems, 2024, 48(24): 155-165.
[14] Naidu O D, Pradhan A K.Precise traveling wave-based transmission line fault location method using single-ended data[J]. IEEE Transactions on Industrial Informatics, 2021, 17(8): 5197-5207.
[15] 池梓斌, 夏成军, 杨明嘉. 基于参数优化VMD和TET的柔直线路单端故障测距方法[J]. 电力系统保护与控制, 2024, 52(4): 1-11.
Chi Zibin, Xia Chengjun, Yang Mingjia.Single-end fault location method for MMC-HVDC transmission lines based on parameter-optimized VMD and TET[J]. Power System Protection and Control, 2024, 52(4): 1-11.
[16] 杨林, 王宾, 董新洲. 高压直流输电线路故障测距研究综述[J]. 电力系统自动化, 2018, 42(8): 185-191.
Yang Lin, Wang Bin, Dong Xinzhou.Overview of fault location methods in high voltage direct current transmission lines[J]. Automation of Electric Power Systems, 2018, 42(8): 185-191.
[17] 雷傲宇, 董新洲, 施慎行. 一种识别输电线路单相接地故障下第二个反向行波的方法[J]. 中国电机工程学报, 2016, 36(8): 2151-2158.
Lei Aoyu, Dong Xinzhou, Shi Shenxing.A method to identify the second reverse travelling wave induced by single-phase-to-ground fault in transmission line[J]. Proceedings of the CSEE, 2016, 36(8): 2151-2158.
[18] 高效海, 何奔腾, 王慧芳, 等. 行波距离保护中识别第2个反射波性质的新方法[J]. 电网技术, 2013, 37(5): 1477-1482.
Gao Xiaohai, He Benteng, Wang Huifang, et al.A new scheme to identify the nature of the second reflection wave in travelling wave based distance protection[J]. Power System Technology, 2013, 37(5): 1477-1482.
[19] 沈毅, 黄琛, 赵振廷, 等. 兼顾短路与断线故障识别的柔性直流电网行波保护方案[J]. 电力系统保护与控制, 2024, 52(22): 143-155.
Shen Yi, Huang Chen, Zhao Zhenting, et al.A traveling wave protection scheme for flexible DC power grids considering both short-circuit and breakage fault identification[J]. Power System Protection and Control, 2024, 52(22): 143-155.
[20] Shen Yi, Zhao Zhenting, Chen Luocheng, et al.A novel method for determining the source of the second traveling wave in fault location of VSC-HVDC lines[C]//5th International Conference on Power Engineering, Shanghai, 2024: 461-466.
[21] 赵振廷, 吴昇阳, 沈毅, 等. 适用于不同边界结构柔性直流电网的行波保护[J]. 中国电机工程学报, 2025, 45(9): 3395-3408.
Zhao Zhenting, Wu Shengyang, Shen Yi, et al.Traveling wave protection suitable for flexible DC power grids with different boundary structures[J]. Proceedings of the CSEE, 2025, 45(9): 3395-3408.
[22] 戴志辉, 牛宝仪, 李铁成, 等. 基于控保协同的三端混合直流输电系统线路保护[J]. 电工技术学报, 2025, 40(1): 108-121.
Dai Zhihui, Niu Baoyi, Li Tiecheng, et al.Line protection method of three-terminal hybrid DC transmission system based on control and protection coordination[J]. Transactions of China Electrotechnical Society, 2025, 40(1): 108-121.
[23] 郑涛, 陈云飞, 马英, 等. 基于复合暂态能量的多端柔性直流电网自适应差动保护[J]. 电工技术学报, 2025, 40(5): 1440-1454.
Zheng Tao, Chen Yunfei, Ma Ying, et al.Differential Protection for Multi Terminal Flexible DC Power Grid Based on Composite Transient Energy[J]. Transactions of China Electrotechnical Society, 2025, 40(5): 1440-1454.
[24] 郑涛, 李紫肖, 陈云飞, 等. 基于等效故障区段的柔性直流输电线路单端量保护方案[J]. 电工技术学报, 2025, 40(3): 771-785.
Zheng Tao, Li Zixiao, Chen Yunfei, et al.Single terminal protection scheme for flexible DC transmission lines based on equivalent fault section[J]. Transactions of China Electrotechnical Society, 2025, 40(3): 771-785.
[25] 戴志辉, 奚潇睿, 李杭泽, 等. 基于波速度比例因子的混合多端直流输电线路故障测距方法[J]. 电力系统保护与控制, 2025, 53(9): 141-153.
Dai Zhihui, Xi Xiaorui, Li Hangze, et al.Fault location method for hybrid multi-terminal DC transmission lines based on wave velocity scale factor[J]. Power System Protection and Control, 2025, 53(9): 141-153.
[26] Lan Tongkun, Li Yinhong, Duan Xianzhong.High fault-resistance tolerable traveling wave protection for multi-terminal VSC-HVDC[J]. IEEE Transactions on Power Delivery, 2021, 36(2): 943-56.
[27] 徐政, 肖晃庆, 张哲任, 等. 柔性直流输电系统[M]. 北京: 机械工业出版社, 2017.
[28] 杨冬锋, 王鹤, 刘晓军, 等. 基于VMD-SVD的多端柔直电网故障测距方案[J]. 电网技术, 2022, 46(8): 3084-3095.
Yang Dongfeng, Wang He, Liu Xiaojun, et al.Fault location scheme for multi-terminal MMC-HVDC system based on VMD-SVD[J]. Power System Technology, 2022, 46(8): 3084-3095.
[29] 段宽, 樊艳芳, 王永进, 等. 基于波速补偿故障距离逐步逼真的直流线路行波测距方法[J]. 电力系统保护与控制, 2021, 49(11): 70-78.
Duan Kuan, Fan Yanfang, Wang Yongjin, et al.A traveling wave ranging method for a DC line based on wave velocity compensation and fault distance approaching its real value gradually[J]. Power System Protection and Control, 2021, 49(11): 70-78.
[30] 李自乾, 樊艳芳, 胡剑生. 不受波速影响的特高压直流输电线路单端故障测距方法[J]. 电力系统保护与控制, 2018, 46(18): 142-148.
Li Ziqian, Fan Yanfang, Hu Jiansheng.Single terminal fault location method of UHVDC transmission line immune to wave speed[J]. Power System Protection and Control, 2018, 46(18): 142-148. |