[1] 陈艳波, 刘宇翔, 田昊欣, 等. 基于广义目标级联法的多牵引变电站光伏-储能协同规划配置[J]. 电工技术学报, 2024, 39(15): 4599-4612.
Chen Yanbo, Liu Yuxiang, Tian Haoxin, et al.Collaborative planning and configuration of photovoltaic and energy storage in multiple traction substations based on generalized analytical target cascading method[J]. Transactions of China Electrotechnical Society, 2024, 39(15): 4599-4612.
[2] 陈明昊, 朱月瑶, 孙毅, 等. 计及高渗透率光伏消纳与深度强化学习的综合能源系统预测调控[J]. 电工技术学报, 2024, 39(19): 6054-6071, 6103.
Chen Minghao, Zhu Yueyao, Sun Yi, et al.The predictive-control optimization method for park integrated energy system considering the high penetration of photovoltaics and deep reinforcement learning[J]. Transactions of China Electrotechnical Society, 2024, 39(19): 6054-6071, 6103.
[3] 孔令国, 王嘉祺, 韩子娇, 等. 基于权重调节模型预测控制的风-光-储-氢耦合系统在线功率调控[J]. 电工技术学报, 2023, 38(15): 4192-4207.
Kong Lingguo, Wang Jiaqi, Han Zijiao, et al.On-line power regulation of wind-photovoltaic-storage-hydrogen coupling system based on weight adjustment model predictive control[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 4192-4207.
[4] 李俊涛, 贾科, 董学正, 等. 网侧故障下光伏直流并网系统不平衡功率快速平抑方法[J]. 电工技术学报, 2024, 39(5): 1340-1351.
Li Juntao, Jia Ke, Dong Xuezheng, et al.A fast method for suppressing unbalanced power in photovoltaic DC grid-connected system under grid-side faults[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1340-1351.
[5] 张波, 高远, 李铁成, 等. 计及IGBT结温约束的光伏高渗透配电网无功电压优化控制策略[J]. 电工技术学报, 2024, 39(5): 1313-1326.
Zhang Bo, Gao Yuan, Li Tiecheng, et al.Reactive voltage optimization control strategy for high penetration photovoltaic distribution network considering IGBT junction temperature constraint[J]. Transactions of China Electrotechnical Society, 2024, 39(5): 1313-1326.
[6] 戚永志, 刘玉田. 风光储联合系统输出功率滚动优化与实时控制[J]. 电工技术学报, 2014, 29(8): 265-273.
Qi Yongzhi, Liu Yutian.Output power rolling optimization and real-time control in wind-photovoltaic-storage hybrid system[J]. Transactions of China Electrotechnical Society, 2014, 29(8): 265-273.
[7] 乐健, 郎红科, 谭甜源, 等. 新型配电系统分布式经济调度信息安全问题研究综述[J]. 电力系统自动化, 2024, 48(12): 177-191.
Le Jian, Lang Hongke, Tan Tianyuan, et al.Review of research on information security problems in distributed economic dispatch for new distribution system[J]. Automation of Electric Power Systems, 2024, 48(12): 177-191.
[8] 韩晓, 王涛, 韦晓广, 等. 考虑阵列间时空相关性的超短期光伏出力预测[J]. 电力系统保护与控制, 2024, 52(14): 82-94.
Han Xiao, Wang Tao, Wei Xiaoguang, et al.Ultrashort-term photovoltaic output forecasting considering spatiotemporal correlation between arrays[J]. Power System Protection and Control, 2024, 52(14): 82-94.
[9] Cui Mingjian, Wang Jianhui.Deeply hidden moving-target-defense for cybersecure unbalanced distribution systems considering voltage stability[J]. IEEE Transactions on Power Systems, 2021, 36(3): 1961-1972.
[10] 郭庆来, 辛蜀骏, 孙宏斌, 等. 电力系统信息物理融合建模与综合安全评估: 驱动力与研究构想[J]. 中国电机工程学报, 2016, 36(6): 1481-1489.
Guo Qinglai, Xin Shujun, Sun Hongbin, et al.Power system cyber-physical modelling and security assessment: motivation and ideas[J]. Proceedings of the CSEE, 2016, 36(6): 1481-1489.
[11] Mohsenian-Rad A H, Leon-Garcia A. Distributed Internet-based load altering attacks against smart power grids[J]. IEEE Transactions on Smart Grid, 2011, 2(4): 667-674.
[12] 张程彬, 崔明建, 张梓枭, 等. 考虑攻击偏好的三相不平衡配电系统分布式FDIA检测[J]. 电力系统保护与控制, 2024, 52(24): 109-119.
Zhang Chengbin, Cui Mingjian, Zhang Zixiao, et al.Distributed FDIA detection for three-phase unbalanced distribution systems[J]. Power System Protection and Control, 2024, 52(24): 109-119.
[13] Živković N, Sarić A T.Detection of false data injection attacks using unscented Kalman filter[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(5): 847-859.
[14] Tian Jue, Tan Rui, Guan Xiaohong, et al.Enhanced hidden moving target defense in smart grids[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 2208-2223.
[15] 刘鑫蕊, 常鹏, 孙秋野. 基于XGBoost和无迹卡尔曼滤波自适应混合预测的电网虚假数据注入攻击检测[J]. 中国电机工程学报, 2021, 41(16): 5462-5476.
Liu Xinrui, Chang Peng, Sun Qiuye.Grid false data injection attacks detection based on XGBoost and unscented Kalman filter adaptive hybrid prediction[J]. Proceedings of the CSEE, 2021, 41(16): 5462-5476.
[16] Mohammadpourfard M, Sami A, Weng Yang.Identification of false data injection attacks with considering the impact of wind generation and topology reconfigurations[J]. IEEE Transactions on Sustainable Energy, 2018, 9(3): 1349-1364.
[17] 李元诚, 曾婧. 基于改进卷积神经网络的电网假数据注入攻击检测方法[J]. 电力系统自动化, 2019, 43(20): 97-104.
Li Yuancheng, Zeng Jing.Detection method of false data injection attack on power grid based on improved convolutional neural network[J]. Automation of Electric Power Systems, 2019, 43(20): 97-104.
[18] Wang Huaizhi, Ruan Jiaqi, Wang Guibin, et al.Deep learning-based interval state estimation of AC smart grids against sparse cyber attacks[J]. IEEE Transactions on Industrial Informatics, 2018, 14(11): 4766-4778.
[19] 韩一宁, 崔明建, 罗光浩, 等. 基于自适应联邦学习的输配网动-静态综合状态估计方法研究[J/OL]. 中国电机工程学报, 1-15[2025-03-17]. http://kns.cnki.net/kcms/detail/11.2107.tm.20250124.1046.010.html.
Han Yining, Cui Mingjian, Luo Guanghao, et al. An integrated dynamic-static state estimation method for transmission and distribution networks based on self-adaptive federated learning[J/OL]. Proceedings of the CSEE, 1-15[2025-03-17]. http://kns.cnki.net/kcms/detail/11.2107.tm.20250124.1046.010.html.
[20] 王健宗, 孔令炜, 黄章成, 等. 联邦学习算法综述[J]. 大数据, 2020, 6(6): 64-82.
Wang Jianzong, Kong Lingwei, Huang Zhangcheng, et al.Research review of federated learning algorithms[J]. Big Data Research, 2020, 6(6): 64-82.
[21] Abdulrahman S, Tout H, Mourad A, et al.FedMCCS: multicriteria client selection model for optimal IoT federated learning[J]. IEEE Internet of Things Journal, 2021, 8(6): 4723-4735.
[22] Konečný J, Mcmahon H B, Yu F X, et al. Federated learning: strategies for improving communication efficiency[J]. arXiv preprint arXiv:1610. 05492, 2016.
[23] Sridhar S, Govindarasu M.Model-based attack detection and mitigation for automatic generation control[J]. IEEE Transactions on Smart Grid, 2014, 5(2): 580-591.
[24] Cui Mingjian, Wang Jianhui, Yue Meng.Machine learning-based anomaly detection for load forecasting under cyberattacks[J]. IEEE Transactions on Smart Grid, 2019, 10(5): 5724-5734.
[25] Yue Meng.An integrated anomaly detection method for load forecasting data under cyberattacks[C]//2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 2017: 1-5.
[26] 苏向敬, 邓超, 栗风永, 等. 基于MGAT-TCN模型的可解释电网虚假数据注入攻击检测方法[J]. 电力系统自动化, 2024, 48(2): 118-127.
Su Xiangjing, Deng Chao, Li Fengyong, et al.Interpretable detection method for false data injection attack on power grid based on multi-head graph attention network and time convolution network model[J]. Automation of Electric Power Systems, 2024, 48(2): 118-127.
[27] 杨玉泽, 刘文霞, 李承泽, 等. 面向电力SCADA系统的FDIA检测方法综述[J]. 中国电机工程学报, 2023, 43(22): 8602-8622.
Yang Yuze, Liu Wenxia, Li Chengze, et al.Review of FDIA detection methods for electric power SCADA system[J]. Proceedings of the CSEE, 2023, 43(22): 8602-8622.
[28] Reisizadeh A, Taheri H, Mokhtari A, et al.Robust and communication-efficient collaborative learning[J]. Advances in Neural Information Processing Systems, 2019, 32.
[29] Berahas A S, Bollapragada R, Keskar N S, et al.Balancing communication and computation in distributed optimization[J]. IEEE Transactions on Automatic Control, 2019, 64(8): 3141-3155.
[30] Lee K, Lam M, Pedarsani R, et al.Speeding up distributed machine learning using codes[J]. IEEE Transactions on Information Theory, 2018, 64(3): 1514-1529.
[31] 程礼临, 臧海祥, 卫志农, 等. 考虑多光谱卫星遥感的区域级超短期光伏功率预测[J]. 中国电机工程学报, 2022, 42(20): 7451-7465.
Cheng Lilin, Zang Haixiang, Wei Zhinong, et al.Ultra-short-term forecasting of regional photovoltaic power generation considering[J]. Proceedings of the CSEE, 2022, 42(20): 7451-7465.
[32] 夏泠风, 黎嘉明, 赵亮, 等. 考虑光伏电站时空相关性的光伏出力序列生成方法[J]. 中国电机工程学报, 2017, 37(7): 1982-1993.
Xia Lingfeng, Li Jiaming, Zhao Liang, et al.A PV power time series generating method considering temporal and spatial correlation characteristics[J]. Proceedings of the CSEE, 2017, 37(7): 1982-1993.
[33] Japkowicz N, Stephen S.The class imbalance problem: a systematic study1[J]. Intelligent Data Analysis, 2002, 6(5): 429-449.
[34] Kim M, Hwang K B.An empirical evaluation of sampling methods for the classification of imbalanced data[J]. PLoS One, 2022, 17(7): e0271260.
[35] Reisizadeh A, Mokhtari A, Hassani H, et al.Fedpaq: A communication-efficient federated learning method with periodic averaging and quantization[C]//International conference on artificial intelligence and statistics. Online, 2020: 2021-2031.
[36] 陈晓霖, 昝道广, 吴炳潮, 等. 面向纵向联邦学习的对抗样本生成算法[J]. 通信学报, 2023, 44(8): 1-13.
Chen Xiaolin, Zan Daoguang, Wu Bingchao, et al.Adversarial sample generation algorithm for vertical federated learning[J]. Journal on Communications, 2023, 44(8): 1-13.
[37] 黄冬梅, 丁仲辉, 胡安铎, 等. 低成本对抗性隐蔽虚假数据注入攻击及其检测方法[J]. 电网技术, 2023, 47(4): 1531-1540.
Huang Dongmei, Ding Zhonghui, Hu Anduo, et al.Low-cost adversarial stealthy false data injection attack and detection method[J]. Power System Technology, 2023, 47(4): 1531-1540. |