|
|
Permanent Magnet Mechanism Control System with High Operation Stability of Vacuum Switch |
Cheng Xian1,2, Yuan Xiaodong1,2, Ge Guowei1,2, Zhu Jianpeng1,2 |
1. School of Electrical Engineering Zhengzhou University Zhengzhou 450001 China; 2. Henan Power Transmission and Distribution Equipment and Electrical Insulation Engineering Research Center Zhengzhou 450001 China |
|
|
Abstract Vacuum switches based on permanent magnet actuator is widely used in power systems. To ensure the accuracy and stability of operation time of vacuum switch in different environments, the stability of power system can be effectively improved. In this paper, firstly, the dynamic characteristics of 10kV vacuum switch operating mechanism are analyzed and calculated, and the simulation test model is established. The algorithm controller is designed by combining radial basis function (RBF) neural network and fuzzy PID adaptive control technology. When the algorithm controller is not added, the overall closing time of the operating mechanism is 22.7-31.8ms, and the closing time is stable at 25.5~26.1ms after adding the algorithm controller. At the same time, the dispersion of closing time of the mechanism is reduced from ±1.5ms to ±0.3ms, and the dispersion can still be maintained at ±0.3ms under different ambient temperatures, which proves the effectiveness of the control system in improving the stability of action time.
|
Received: 12 September 2020
|
|
|
|
|
[1] 邓赟, 武建文, 金鑫晨, 等. 基于高压断路器电机操动机构的位移分段控制策略[J]. 电工技术学报, 2018, 33(15): 3586-3595. Deng Yun, Wu Jianwen, Jin Xinchen, et al.Displacement subsection control strategy based on motor operating mechanism of high voltage circuit breaker[J]. Transactions of China Electrotechnical Society, 2018, 33(15): 3586-3595. [2] 程显, 葛国伟, 廖敏夫, 等. 基于真空断路器与SF6断路器串联的新型混合式高压直流断路器理论分析[J]. 电力自动化设备, 2019, 39(6): 68-74. Cheng Xian, Ge Guowei, Liao Minfu, et al.Theoretical analysis of a new type of hybrid HVDC circuit breaker based on series connection between vacuum circuit breaker and SF6 circuit breaker[J]. Electrical Automation Equipment, 2019, 39(6): 68-74. [3] 孙丽琼, 王振兴, 何塞楠, 等. 126kV真空断路器分离磁路式永磁操动机构[J]. 电工技术学报, 2015, 30(20): 49-56. Sun Liqiong, Wang Zhenxing, He Sainan, et al.Separation magnetic circuit permanent magnetic actuator for 126kV vacuum circuit breaker[J]. Transactions of China Electrotechnical Society, 2015, 30(20): 49-56 [4] 程显, 赵海洋, 葛国伟, 等. 基于螺线管和线圈盘的新型混合式斥力机构分析[J]. 电工技术学报, 2020, 35(14): 2997-3006. Cheng Xian, Zhao Haiyang, Ge Guowei, et al.Analysis of a new hybrid repulsion mechanism based on solenoid and coil disk[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 2997-3006. [5] 葛国伟, 廖敏夫, 黄金强, 等. 双断口真空断路器配合特性仿真与实验[J]. 电工技术学报, 2016, 31(22): 57-65. Ge Guowei, Liao Minfu, Huang Jinqiang, et al.Simulation and test of matching characteristics of double-break vacuum circuit breakers[J]. Transactions of China Electrotechnical Society, 2016, 31(22): 57-65. [6] 张梓莹, 梁德世, 蔡淼中, 等. 机械式高压直流真空断路器换流参数研究[J]. 电工技术学报, 2020, 35(12): 2554-2561. Zhang Ziying, Liang Deshi, Cai miaozhong, et al. Study on commutation parameters of mechanical high voltage DC vacuum circuit breaker[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2554-2561. [7] 孙曙光, 李勤, 杜太行, 等. 基于一维卷积神经网络的低压万能式断路器附件故障诊断[J]. 电工技术学报, 2020, 35(12): 2562-2573. Sun Shuguang, Li Qin, Du Taihang, et al.Fault diagnosis of accessories for the low voltage conventional circuit breaker based on one-dimensional convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2562-2573. [8] Castro-Sitiriche M J, Ofoli A R. DSP-based laboratory implementation of hybrid fuzzy-PID controller using genetic optimization for high-performance motor drives[J]. IEEE Transactions on Industry Applications, 2008, 44(6): 1977-1986 [9] Rubaai A, Castro-Sitiriche M J, Ofoli A R. DSP-based laboratory implementation of hybrid fuzzy-PID controller using genetic optimization for high-performance motor drives[J]. IEEE Transactions on Industry Applications, 2008, 44(6): 1977-1986. [10] Akman C, Haider S, Ayarcan Y, et al.Anti-windup PID controller with integral state predictor for variable-speed motor drives[J]. IEEE Transactions on Industrial Electronics, 2012, 59(3): 1509-1516. [11] Yubutea T, Yamada T.Neural networks controller characteristics with regard to adaptive control[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1992, 22(1): 170-177. [12] Liu Y, Zhu Z Q, Howe D.Direct torque control of brushless DC drives with reduced torque ripple[J]. IEEE Transactions on Industry Applications, 2005, 41(2): 599-608. [13] 刘爱民, 毕玉洁, 吴志恒, 等. 高压断路器永磁电机机构及控制系统设计[J]. 电机与控制学报, 2015, 19(1): 45-50. Liu Aimin, Bi Yujie, Wu Zhiheng, et al.Mechanism and control system design of permanent magnet motor for high voltage circuit breaker[J]. Journal of Electrical Machinery and Control, 2015, 19(1): 45-50. [14] 张忠蕾, 李庆民, 娄杰.电力电子控制电动机操动机构分闸运动特性的仿真分析[J]. 电网技术, 2006, 30(18): 58-63. Zhang Zhonglei, Li Qingmin, Lou Jie.Simulation and analysis on switching-off motion characteristic of permanent magnet synchronous motor driven operating mechanism controlled by power converters for circuit breakers[J]. Power System Technology, 2006, 30(18): 58-63. [15] 方红庆, 沈祖诒.基于改进粒子群算法的水轮发电机PID调速器参数优化[J]. 中国电机工程学报, 2005, 25(22): 120-124. Fang Hongqing, Shen Zuyi.Parameter optimization of hydrogenerator PID governor based on improved particle swarm optimization algorithm[J]. Proceedings of the CSEE, 2005, 25(22): 120-124. [16] 蒋宗礼. 人工神经网络导论[M].北京: 高等教育出版社, 2001. [17] Akhyar S, Omatu S.Neuromorphic self-tuning PID controller[C]//IEEE International Conference on Neural Networks, San Francisco, California, 1993: 552-557. [18] Orlowska-Kowalska T, Szabat K.Control of the drive system with stiff and elastic couplings using adaptive neuro-fuzzy approach[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 228-240. [19] Liu Puyin, Li Hongxing.Efficient learning algorithms for three-layer regular feed forward fuzzy neural networks[J]. IEEE Transactions on Neural Networks, 2004, 15(3): 545-558. [20] Maraziotis I A, Dragomir A, Bezerianos A.Gene networks reconstruction and time-series prediction from microarray data using recurrent neural fuzzy networks[J]. IET Systems Biology, 2007, 1(1): 41-50. |
|
|
|