|
|
A Method of Mechanical Fault Identification of Permanent Magnet Repulsion Mechanism of Vacuum Circuit Breaker Based on Chaos Attractor |
Liu Xiaoming1, Zhang Xusong1, Jiang Wentao2, Chen Hai1, Chen Junping3, Song Boyang1 |
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. School of Mechanical Engineering Tiangong University Tianjin 300387 China; 3. Chengdu Xuguang Electronics Co. Ltd Chengdu 610500 China |
|
|
Abstract In order to solve the problem that the vibration signal of repulsive mechanism of vacuum circuit breaker is transient, nonlinear, and it is difficult to quantitatively evaluate and identify the fault, this paper proposes a method of repulsive mechanism fault evaluation and identification based on chaotic attractor moment feature of attractor morphology and particle swarm optimization support vector machine. The typical faults of the repulsive mechanism in the process of opening and closing, especially the vibration signals of the opening oil buffer with different degrees of overmodulation fault, are analyzed. Firstly, the phase space reconstruction method of chaos theory and Wolf algorithm are used to obtain the maximum Lyapunov exponent, which shows that the vibration signal of repulsive mechanism has obvious chaotic characteristics. The evolution of chaotic attractor of the vibration signal is qualitatively analyzed using three-dimensional phase diagram. Then, the chaotic attractor moment theory is introduced to extract four kinds of two-dimensional attractor moments. The slope of the first region curve is calculated as the attractor morphological feature by the least square linear regression method, and the time-domain signals are extracted to form the feature vector library. Finally, the accuracy of the support vector machine algorithm and the particle swarm optimization-support vector machine combination algorithm is compared. The experimental results show that the proposed method can accurately identify the fault types of repulsive mechanism.
|
Received: 02 July 2021
|
|
|
|
|
[1] 刘路辉, 叶志浩, 付立军, 等. 快速直流断路器研究现状与展望[J]. 中国电机工程学报, 2017, 37(4): 966-977. Liu Luhui, Ye Zhihao, Fu Lijun, et al.Research & development status and prospects of fast DC circuit breakers[J]. Proceedings of the CSEE, 2017, 37(4): 966-977. [2] 杜凌艳, 王振浩, 王刚, 等. 高压断路器运行状态实时监测系统设计[J]. 电力自动化设备, 2006, 26(1): 58-61. Du Lingyan, Wang Zhenhao, Wang Gang, et al.Design of real-time operating state monitoring system for HV breaker[J]. Electric Power Automation Equipment, 2006, 26(1): 58-61. [3] 王灿, 杜船, 徐杰雄. 中高压直流断路器拓扑综述[J]. 电力系统自动化, 2020, 44(9): 187-199. Wang Can, Du Chuan, Xu Jiexiong.Review of topologies for medium-and high-voltage DC circuit breaker[J]. Automation of Electric Power Systems, 2020, 44(9): 187-199. [4] 马曾锐, 赵伟涛. 弹簧操动机构分闸缓冲性能研究与优化[J]. 高压电器, 2017, 53(1): 138-143, 150. Ma Zengrui, Zhao Weitao.Research and optimization on the opening cushion performance of spring operating mechanism[J]. High Voltage Apparatus, 2017, 53(1): 138-143, 150. [5] 常广, 张振乾, 王毅. 高压断路器机械故障振动诊断综述[J]. 高压电器, 2011, 47(8): 85-90. Chang Guang, Zhang Zhenqian, Wang Yi.Review on mechanical fault diagnosis of high-voltage circuit breakers based on vibration diagnosis[J]. High Voltage Apparatus, 2011, 47(8): 85-90. [6] 林琳, 陈志英. 基于粗糙集神经网络和振动信号的高压断路器机械故障诊断[J]. 电工技术学报, 2020, 35(增刊1): 277-283. Lin Lin, Chen Zhiying.Mechanical fault diagnosis of high voltage circuit breakers based on rough set neural networks and vibration signals[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 277-283. [7] 万书亭, 豆龙江, 李聪, 等. 基于振动信号的高压断路器合闸特性参数在线检测方法研究[J]. 振动工程学报, 2019, 32(2): 359-367. Wan Shuting, Dou Longjiang, Li Cong, et al.Study on on-line detection of high voltage circuit breaker closing characteristic parameters based on vibration signal[J]. Journal of Vibration Engineering, 2019, 32(2): 359-367. [8] 孙来军. 振动信号小波包特征熵的时变与频变特性分析[J]. 高电压技术, 2007, 33(8): 146-150. Sun Laijun.Time-variation and frequency-variation analysis of wavelet packet-characteristic entropy for vibration signals[J]. High Voltage Engineering, 2007, 33(8): 146-150. [9] 樊浩, 李兴文, 苏海博, 等. 基于主成分分析: 支持向量机优化模型的断路器故障诊断方法研究[J]. 高压电器, 2020, 56(6): 143-151. Fan Hao, Li Xingwen, Su Haibo, et al.Research on circuit breaker fault diagnosis method based on principal component analysis-support vector machine optimization model[J]. High Voltage Apparatus, 2020, 56(6): 143-151. [10] 杨秋玉, 阮江军, 黄道春, 等. 基于振动信号时频图像识别的高压断路器分闸缓冲器状态评估[J]. 电工技术学报, 2019, 34(19): 4048-4057. Yang Qiuyu, Ruan Jiangjun, Huang Daochun, et al.Opening damper condition evaluation based on vibration time-frequency images for high-voltage circuit breakers[J]. Transactions of China Electro-technical Society, 2019, 34(19): 4048-4057. [11] 董文亮, 邹积岩, 郭兴宇. 直流真空断路器模块的机械联动特性仿真与实验研究[J]. 中国电机工程学报, 2017, 37(4): 1005-1011. Dong Wenliang, Zou Jiyan, Guo Xingyu.Simulations and experimental research on dynamic characteristics of DC vacuum circuit breaker modules[J]. Pro-ceedings of the CSEE, 2017, 37(4): 1005-1011. [12] Jiang Wentao, Liu Xiaoming, Chen Hai, et al.Analysis on dynamic characteristics of fast operating mechanism of vacuum circuit breaker[C]//IEEE Inter-national Conference on Applied Superconductivity and Electromagnetic Devices, Tianjin, China, 2020: 1-2. [13] 程显, 赵海洋, 葛国伟, 等. 快速斥力机构线圈盘磁场优化设计[J]. 高电压技术, 2020, 46(8): 2643-2653. Cheng Xian, Zhao Haiyang, Ge Guowei, et al.Optimum design of coil disc magnetic field of rapid repulsion mechanism[J]. High Voltage Engineering, 2020, 46(8): 2643-2653. [14] 吴振升, 王玮, 黄梅, 等. 基于相空间重构的高压断路器振动信号特征分析[J]. 现代电力, 2006, 23(1): 10-14. Wu Zhensheng, Wang Wei, Huang Mei, et al.Analysis of characteristics of vibration signals in high-voltage circuit breakers based on phase space reconstruction[J]. Modern Electric Power, 2006, 23(1): 10-14. [15] 阮江军, 杨秋玉, 黄道春, 等. 高压断路器机械振动信号混沌吸引子形态特性[J]. 电力自动化设备, 2020, 40(3): 187-193. Ruan Jiangjun, Yang Qiuyu, Huang Daochun, et al.Shape characteristic analysis of chaotic attractor for mechanical vibration signal of high-voltage circuit breaker[J]. Electric Power Automation Equipment, 2020, 40(3): 187-193. [16] 杨秋玉, 王栋, 阮江军, 等. 基于振动信号的断路器机械零部件故障程度识别[J]. 电工技术学报, 2021, 36(13): 2880-2892. Yang Qiuyu, Wang Dong, Ruan Jiangjun, et al.Fault severity estimation method for mechanical parts in circuit breakers based on vibration analysis[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2880-2892. [17] Takens F.Lecture notes in mathematics[M]. Berlin: Springer, 1981. [18] 董二女. 粉末注射成形动力系统的混沌吸引子形态研究[D]. 长沙: 中南大学, 2011. [19] 张友利. 穹窿管内油水两相流流动特性研究[D]. 天津: 天津大学, 2010. [20] 付饶, 梁慧敏, 叶雪荣, 等. 接触器触点超程分析及其退化状态的诊断[J]. 电工技术学报, 2020, 35(1): 125-133. Fu Rao, Liang Huimin, Ye Xuerong, et al.Analysis of the contact overtravel of contactor and its degradation state evaluation[J]. Transactions of China Electro-technical Society, 2020, 35(1): 125-133. [21] 张婷婷, 于明, 李宾, 等. 基于Wavelet降噪和支持向量机的锂离子电池容量预测研究[J]. 电工技术学报, 2020, 35(14): 3126-3136. Zhang Tingting, Yu Ming, Li Bin, et al.Capacity prediction of lithium-ion batteries based on Wavelet noise reduction and support vector machine[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 3126-3136. |
|
|
|