|
|
Calculation Method of Distributed Generator Maximum Access Power Considering Balance Degree of Harmonic Margin |
Yu Guangzheng1, Lin Tao2, Tang Bo1, Chen Rusi3, Tian Ye3 |
1. School of Electrical Engineering Shanghai University of Electric Power Shanghai 200090 China; 2. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China; 3. State Grid Hubei Electric Power Research Institute Wuhan 430077 China |
|
|
Abstract Distributed generator (DG) accessing to smart distribution grids, with the improvement of their permeability, may cause harmonic levels of grid node exceeding the harmonic standards GB and restrict power accessing to distributed power. Study of penetrating level considering harmonic influence is very important. To solve this problem, this paper analyzes the harmonics injecting to grid indeterminately when new energy accessing to grid and analyze the influence of harmonic spreading in grid based on 2m+1 point estimation method. The calculation methods of balance degree index of harmonic margin is proposed based on each node harmonics voltage distribution of the whole network. This paper present a method for maximizing penetration level of DG, modeling in the form of multi-objective mathematical programming to simultaneously minimize balance comprehensive degree index of harmonic margin and maximize power of DG access to grid. In order to solve this model, an augmentedε-constraint considering weight of each objective function method incorporation of particle swarm optimization (PSO-AWCM) is proposed which could optimize more effectively comparing to conventionalε-constraint method. Moreover, fuzzy decision theory is implemented to choose the most preferred compromise solution among the Pareto solutions. Using IEEE33 bus system demonstrate the effectiveness and superiority of the proposed method.
|
Received: 02 January 2020
|
|
|
|
|
[1] Rajkumar M, Mahadevan K, Kannan S, et al.Combined economic and emission dispatch with valve-point loading of thermal generators using modified NSGA-II[J]. Journal of Electrical Engineering & Technology, 2013, 8(3): 490-498. [2] Chandana B, Elham M.Power quality studies in the presence of DG[J]. IEEE Transactions on Power Delivery, 2007, 18(7): 224-229. [3] 钟清, 高新华, 余南华, 等. 谐波约束下的主动配电网分布式电源准入容量与接入方式[J]. 电力系统自动化, 2014, 38(24) :108-113. Zhong Qing, Gao Xinhua, Yu Nanhua, et al.Accommodating capacity and mode of distributed generation under harmonic constraint in active distribution networks[J]. Automation of Electric Power System, 2014, 38(24):108-113. [4] Filippo S, Paolo D L, Fab I O C, et al. Inverters for grid connection of photovoltaic systems and power quality: case studies[C]//3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems(PEDG), Aswan, Egypt, 2012: 564-569. [5] Enslin J H R, Heskes P J M.Harmonic interaction between a large number of distributed power inverters and the distribution network[J]. IEEE Transactions on Power Electronics, 2004, 19(6): 1586-1593. [6] 江南, 甘德强, 龚建荣. 考虑谐波影响的分布式电源准入功率计算[J].电力系统自动化, 2007, 31(3): 19-23. Jiang Nan, Gan Deiqiang, Gong Jianrong.Computing the maximum penetrating level of distributed generators in distribution network by taking into account of harmonic constraints[J]. Automation of Electric Power System, 2007, 31(3): 19-23. [7] 杭银丽. 分布式电源对电网谐波分布的影响及配置研究[D]. 南京: 南京理工大学, 2010. [8] Jiang X, Gole A M.A frequency scanning method for the identification of harmonic instabilities in hvdc systems[J]. IEEE Transactions on Power Delivery, 1995, 10(4): 1875-1881. [9] Xia Daozhi, Heydt G T.Harmonic power flow studies to implementation and practical application[J]. IEEE Transactions on Power Apparatus and Systems, 1982, 101(6): 1266-1270. [10] 罗毅, 邵周策, 张磊, 等. 考虑风电不确定性和气网运行约束的鲁棒经济调度和备用配置[J]. 电工技术学报, 2018, 33(11): 2456-2467. Luo Yi, Shao Zhouce, Zhang Lei, et al.Robust economic dispatch and reserve configuration considering wind uncertainty and gas network constraints[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2456-2467. [11] 张建华, 曾博, 张玉莹, 等. 主动配电网规划关键问题与研究展望[J]. 电工技术学报, 2014, 29(2): 13-23. Zhang Jianhua, Zeng Bo, Zhang Yuying, et al.Key issues and research prospects of active distribution network planning[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 13-23. [12] 王守相, 张颖, 韩亮. 配电系统三相不确定谐波潮流的复仿射计算方法[J]. 电力系统自动化, 2015, 39(7): 41-46. Wang Shouxiang, Zhang Ying, Han Liang.A complex affine calculating method for three-phase uncertain harmonic power flow in distribution system[J]. Automation of Electric Power System, 2015, 39(7): 41-46. [13] 余光正, 林涛, 徐遐龄, 等. 基于2m+1 点估计法的考虑风力发电接入时电力系统谐波概率潮流算法[J]. 电网技术, 2015, 39(11): 3260-3265. Yu Guangzheng, Lin Tao, Xu Xialing, et al.An algorithm based on 2m+1 point estimate method for harmonic probabilistic load flow calculation of power systems incorporating wind power[J]. Power System Technology, 2015, 39(11): 3260-3265. [14] 彭春华, 孙惠娟. 基于非劣排序微分进化的多目标优化发电调度[J]. 中国电机工程学报, 2009, 29(34): 71-76. Peng Chunhua, Sun Huijuan.Multi-objective optimal power dispatch based on non-dominated sorting differential evolution[J]. Proceedings of the CSEE, 2009, 29(34): 71-76. [15] 陈道君, 龚庆武, 张茂林, 等. 考虑能源环境效益的含风电场多目标优化调度[J]. 中国电机工程学报, 2011, 31(13): 10-17. Chen Daojun, Gong Qingwu, Zhang Maolin, et al.Multi-objective optimal dispatch in wind power integrated system incorporating energy environmental efficiency[J]. Proceedings of the CSEE, 2011, 31(13): 10-17. [16] 杨柳青, 林舜江, 刘明波, 等. 考虑风电接入的大型电力系统多目标动态优化调度[J]. 电工技术学报, 2014, 29(10): 286-295. Yang Liuqing, Lin Shunjiang, Liu Mingbo, et al.Multi-objective dynamic optimal dispatch for large-scale power systems considering wind power penetration[J]. Transactions of China Electrotechnical Society, 2014, 29(10): 286-295. [17] George Mavrotas.Effective implementation of the econstraint method in multi-objective mathematical programming problems[J]. Applied Mathematics and Computation, 2009, 213(2): 455-465. [18] 张卫华, 邱菀华. 基于供应链运作参考模型的供应链多目标绩效优化模型[J]. 计算机集成制造系统, 2012, 18(9): 2052-2058. Zhang Weihua, Qiu Wanhua.Multi-objective performance optimization model of supply chains based on SCOR[J]. Computer Integrated Manufacturing Systems, 2012, 18(9): 2052-2058 [19] 刘文学, 梁军等, 贠志皓, 等.考虑节能减排的多目标模糊机会约束[J]. 电工技术学报, 2016, 31(1):62-69. Liu Wenxue, Liang Jun, Yun Zhihao, et al.Multi-objective fuzzy chance constrained dynamic economic dispatch considering energy saving and emission reduction[J]. Transactions of China Electro-technical Society, 2016, 31(1), 62-69. [20] Sidrach-de-Cardona M, Carretero J. Analysis of the current total harmonic distortion for different single-phase inverters for grid-connected pv-systems[J]. Solar Energy Materials & Solar Cells, 2005: 529-540. [21] Wei Sun, Gareth P Harrison.Distribution network capacity assessment:incorporating harmonic distortion limits[C]//22nd IEEE Power Engineering Soeiety International Conference, San Diego, CA, USA, 2001: 81-86. [22] International Electrotechnical Commission (IEC). IEC/ TR 61000-3-6 electromagnetic compatibility (EMC)- Part 3-6: limits-assessment of emission limits for the connection of distortinginstallations to MV, HV and EHV power systems[S]. 2008. [23] Sokratis T T, Stavros A P.An investigation of the harmonic emissions of wind turbines[J]. IEEE Transactions on Energy Conversion, 2007, 22(1):150-158. [24] Papathanassiou S A, Papadopoulos M P.Harmonic analysis in a power system with wind generation[J]. IEEE Transaction on Power Delivery, 2006, 21(4): 2006-2016. [25] Luis S, Juan J M, Remus T.Deterministic and stochastic study of wind farm harmonic currents[J]. IEEE Transaction on Energy Conversion, 2010, 25(4): 1071-1080. [26] 陈卫, 杨波, 张兆云, 等. 计及电动汽车充电站接入的配电网承载能力评估与优化[J]. 电工技术学报, 2014, 29(8): 27-35, 45. Chen Wei, Yang Bo, Zhang Zhaoyun, et al.Distribution networks supportability evaluation and optimization considering electric vehicles charging stations[J]. Transactions of China Electrotechnical Society, 2014, 29(8): 27-35, 45. |
|
|
|