|
|
Multi-Objective Coordinated Planning of Source Network Based on Safety Factor and Coordination Factor |
Zhang Xiaohui1, Li Yang2, Zhong Jiaqing1, Gao Fanfan1 |
1. Key Lab of Power Electronics for Energy Conservation and Motor Drive of Hebei Province Yanshan University Qinhuangdao 066004 China; 2. State Grid Chengde Power Supply Company Chengde 067000 China |
|
|
Abstract In the distribution network system with distributed generation, it should be considered in the coordinated planning of the source network, not only economic cost but also safety and coordination. The line blocking compensation cost is added to the traditional economic objective function. The "safety factor" is defined as the system security objective function to improve its security capability with considering the security of distributed generation and grid line respectively. A "coordination factor" is proposed from the transmission coordination and structural coordination on both sides of the source and network. It is regarded as the coordination objective function to enhance the coordination ability on both sides. A multi-objective coordinated planning model is established based on safety factor and coordination factor. The planning result is determined by the multi-objective bacterial colony chemotaxis algorithm and the method of compromise solution. Finally, the IEEE 33 system is taken as an example for simulation research. The superiority of the proposed model is verified by comparing with the single-objective model. Through sensitivity analysis of the objective function, the feasibility of the proposed security and coordination objective function is verified.
|
Received: 30 June 2020
|
|
|
|
|
[1] 颜湘武, 徐韵, 李若瑾, 等. 基于模型预测控制含可再生分布式电源参与调控的配电网多时间尺度无功动态优化[J]. 电工技术学报, 2019, 34(10): 2022-2037. Yan Xiangwu, Xu Yun, Li Ruojin, et al.Multi-time scale reactive power optimization of distribution grid based on model predictive control and including RDG regulation[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2022-2037. [2] 张永斌, 聂明林, 张俊鹏, 等. 考虑分布式电源不确定性的配电网网架模糊规划[J]. 电工技术学报, 2019, 34(增刊1): 258-263. Zhang Yongbin, Nie Minglin, Zhang Junpeng, et al.Fuzzy planning of distribution network grid frame considering the uncertainty of distributed power supply[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 258-263. [3] 沈欣炜, 朱守真, 郑竞宏, 等. 考虑分布式电源及储能配合的主动配电网规划-运行联合优化[J]. 电网技术, 2015, 39(7): 1913-1920. Shen Xinwei, Zhu Shouzhen, Zheng Jinghong, et al.Active distribution network planning-operation co-optimization considering the coordination of ESS and DG[J]. Power System Technology, 2015, 39(7): 1913-1920. [4] 刘佳, 程浩忠, 姚良忠, 等. 混合输配电系统的分布式随机优化规划[J]. 电工技术学报, 2019, 34(10): 1987-1998. Liu Jia, Cheng Haozhong, Yao Liangzhong.A distributed stochastic optimization method for planning transmission and distribution systems[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 1987-1998. [5] 贾清泉, 赵美超, 孙玲玲, 等. 主动配电网中计及时序性与相关性的分布式光伏并网规划[J]. 中国电机工程学报, 2018, 38(6): 1719-1728, 1908. Jia Qingquan, Zhao Meichao, Sun Lingling, et al.Planning for grid-connection of distributed PVs considering the sequential feature and correlation in active distribution network[J]. Proceedings of the CSEE, 2018, 38(6): 1719-1728, 1908. [6] Melgar-Dominguez O D, Pourakbari-Kasmaei M, Man-tovani J R S. Adaptive robust short-term planning of electrical distribution systems considering siting and sizing of renewable energy-based DG units[J]. IEEE Transactions on Sustainable Energy, 2019, 10(1): 158-169. [7] Mehmood K K, Kim C, Khan S U, et al.Unified planning of wind generators and switched capacitor banks: a multiagent clustering-based distributed approach[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6978-6988. [8] Gan, Wei, Ai Xiaomeng, Fang Jiakun, et al. Security constrained co-planning of transmission expansion and energy storage[J]. Applied Energy, 2019, 239: 383-394. [9] 沈政委, 汤涌, 易俊, 等. 考虑N-1安全约束的输电线路投切缓解电压越限的电网拓扑优化方法[J]. 电网技术, 2019, 43(12): 4406-4413. Shen Zhengwei, Tang Yong, Yi Jun, et al.Network topology optimization method for relieving voltage violations by transmission switching considering N-1 security constraints[J]. Power System Technology, 2019, 43(12): 4406-4413. [10] 王一哲, 汤涌, 董朝阳, 等. 应用于输电网中长期规划的混合性规划模型[J]. 电网技术, 2016, 40(7): 2094-2100. Wang Yizhe, Tang Yong, Dong Chaoyang, et al.A hybrid criterion model for transmission system medium and long terms expansion planning[J]. Power System Technology, 2016, 40(7): 2094-2100. [11] 李少岩, 任乙沛, 顾雪平, 等. 基于短路电流约束显式线性建模的输电网结构优化[J]. 电工技术学报, 2020, 35(15): 3292-3302. Li Shaoyan, Ren Yipei, Gu Xueping, et al.Optimization of transmission network structure based on explicit linear modeling of short circuit current constraints[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3292-3302. [12] 李珂, 邰能灵, 张沈习, 等. 考虑相关性的分布式电源多目标规划方法[J]. 电力系统自动化, 2017, 41(9): 51-57, 199. Li Ke, Tai Nengling, Zhang Shenxi, et al.Multi-objective programming method for distributed power supply considering correlation[J]. Automation of Electric Power Systems, 2017, 41(9): 51-57, 199. [13] 刘佳, 徐谦, 程浩忠, 等. 考虑N-1安全的分布式电源多目标协调优化配置[J]. 电力自动化设备, 2017, 37(7): 84-92. Liu Jia, Xu Qian, Cheng Haozhong, et al.Considering N-1 secure multi-objective coordinated optimal configuration of distributed power supply[J]. Electric Power Automation Equipment, 2017, 37(7): 84-92. [14] 屈刚, 程浩忠, 欧阳武. 考虑线路剩余输电容量的多目标电网规划[J]. 电力系统自动化, 2008, 32(10): 27-31, 60. Qu Gang, Cheng Haozhong, Ouyang Wu.Multi-objective grid planning considering the residual transmission capacity of the line[J]. Automation of Electric Power Systems, 2008, 32(10): 27-31, 60. [15] 白牧可, 唐巍, 张璐, 等. 基于机会约束规划的DG与配电网架多目标协调规划[J]. 电工技术学报, 2013, 28(10): 346-354. Bai Muke, Tang Wei, Zhang Lu, et al.Multi-objective coordinated planning of DG and distribution grid based on opportunity constraint planning[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 346-354. [16] 李逐云, 雷霞, 邱少引, 等. 考虑“源-网-荷”三方利益的主动配电网协调规划[J]. 电网技术, 2017, 41(2): 378-387. Li Zhuyun, Lei Xia, Qiu Shaoyin, et al.Active distribution network coordination planning considering the interests of the three parties of "source-network-load"[J]. Power Grid Technology, 2017, 41(2): 378-387. [17] Yan Hanting, Huang Chunyan, Jiang Haoxia, et al.Active distribution network bi-level planning considering the 'Source-Grid-Load-Storage'collaborative[C]//Inte-rnational Conference on Power System Technology, Guangzhou, 2018: 1712-1716. [18] Zhang Ning, Hu Zhaoguang, Shen Bo, et al.A source-grid-load coordinated power planning model considering the integration of wind power generation[J]. Applied Energy, 2016, 168: 13-24. [19] Song Xinfu, Pan Lü, Zhang Zengqiang, et al.Source-network-load coordination planning study based on the big data from electric power metering[C]//IEEE International Conference on Power and Renewable Energy, Shanghai, 2016: 339-344. [20] Mavalizadeh H, Ahmadi A, Heidari A.Probabilistic multi-objective generation and transmission expansion planning problem using normal boundary intersection[J]. IET Generation, Transmission & Distribution, 2015, 9(6): 560-570. [21] Koutsoukis N C, Georgilakis P S, Hatziargyriou N D.Multistage coordinated planning of active distribution networks[J]. IEEE Transactions on Power Systems, 2018, 33(1): 32-44. [22] 穆永铮, 鲁宗相, 周勤勇, 等. 基于可靠性均衡优化的含风电电网协调规划[J]. 电网技术, 2015, 39(1): 16-22. Mu Yongzheng, Lu Zongxiang, Zhou Qinyong, et al.Coordinated planning of wind power grid based on reliability equilibrium optimization[J]. Power System Technology, 2015, 39(1): 16-22. [23] 范绚然, 袁越, 原睿萌, 等. 计及电压越限投资的有源配电网节点电价计算方法[J]. 电力建设, 2017, 38(10): 123-128. Fan Xuanran, Yuan Yue, Yuan Ruimeng, et al.Calculation method for node electricity price of active distribution network with voltage overrun[J]. Electric Power Construction, 2017, 38(10): 123-128. [24] 张晓辉, 卢志刚, 秦四娟. 基于改进细菌群体趋药性算法的电力系统无功优化[J]. 电网技术, 2012, 36(2): 109-114. Zhang Xiaohui, Lu Zhigang, Qin Sijuan.Reactive power management based on improved bacterial colony chemotaxis algorithm[J]. Power System Technology, 2012, 36(2): 109-114. [25] Lu Zhigang, Lu Congying, Feng Tao, et al.Carbon dioxide capture and storage planning considering emission trading system for a generation corporation under the emission reduction policy in China[J]. IET Generation, Transmission & Distribution, 2015, 9(1): 43-52. [26] 顾雪平, 李扬, 吴献吉. 基于局部学习机和细菌群体趋药性算法的电力系统暂态稳定评估[J]. 电工技术学报, 2013, 28(10): 271-279. Gu Xueping, Li Yang, Wu Xianji.Transient stability assessment of power systems based on local learning machine and bacterial colony chemotaxis algorithm[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 271-279. [27] 冯涛. 基于MOBCC算法的电力系统环境经济调度研究[D]. 秦皇岛: 燕山大学, 2015. [28] 盛四清, 刘梦. 一种同时考虑DG和ESS选址定容的主动配电网规划方法[J]. 电力科学与工程, 2015, 31(10): 21-26. Sheng Siqing, Liu Meng.An active distribution network planning method considering both DG and ESS location and capacity determination[J]. Electric Power Science and Engineering, 2015, 31(10): 21-26. [29] 李少前. 主动配电网规划研究[D]. 济南: 山东大学, 2018. |
|
|
|