|
|
Numerical Calculation of Temperature Field for Tubular Linear Motor Based on Finite Element Method |
Li Liyi, Huang Xuzhen, Kou Baoquan, Pan Donghua |
Harbin Institute of Technology Harbin 150008 China |
|
|
Abstract This paper conducts the research of numerical calculation of temperature field for a tubular linear motor under different working conditions, adopting heat transfer theory. The temperature field model of the motor based on finite element method (FEM) in cylindrical coordinates is established. When the motor works in short stroke back and forth for a long time, the coupled region of the mover and stator is selected as the temperature calculation region. And the heat convection boundary of the surface between the coupled region and uncoupled stator is established, where reflects the heat exchange. When the motor works in high over-load for a short time, two temperature field models are researched and compared, choosing the mover-stator coupling area and the mover as the calculation region respectively. And moreover, the static temperature field distribution of the motor under long time working condition and the temperature rise under high over-load as well as short time condition are obtained. Finally, on the basis of computational simulation, the results of calculation and experiment are compared.
|
Received: 16 September 2011
Published: 28 November 2013
|
|
|
|
|
[1] Shenkman A L, Chertkov M. Experimental method for synthesis of generalized thermal circuit of polyphase induction motors[J]. IEEE Transactions on Energy Conversion. 2000, 15(3): 264-268. [2] Bousbaine A, McCormick M, Low W F. In-situ determination of thermal coefficients for electrical machines[J]. IEEE Transactions of Energy Conversion. 1995, 10(3): 385-381. [3] Preis K, Biro O, Dyczij R Edlinger. Application of FEM to coupled-electric, thermal and mechanical problem [J]. IEEE Transactions on Magnetics, 1994, 30(5): 3316-3319. [4] Eric Chauveau, El Hadi Zaim, Didier Trichet, et al. A statistical approach of temperature calculation in electrical machines[J]. IEEE Transactions on Magnetics, 2000, 36(4): 1826-1829. [5] 鲁涤强, 黄学良, 胡敏强. 汽轮发电机端部三维温度场的有限元计算[J]. 中国电机工程学报, 2001, 21(3): 83-86. [6] 靳慧勇, 李伟力, 马贤好, 等. 大型空冷汽轮发电机定子内流体速度与流体温度数值计算与分析[J]. 中国电机工程学报, 2006, 26(16): 168-173. [7] 江善林, 邹继斌, 张洪量. 电梯拽引PMSM三维暂态温度场数值计算与分析[J]. 电工技术学报, 2007, 22(10): 7-11. [8] 马俊. 圆筒型直线电机模型建立及其动态温度场研究[D]. 哈尔滨: 哈尔滨理工大学, 2005. [9] 孙建宏, 丁文, 鱼振民. 扁平型直线异步电机温度场的计算与分析[J]. 电机与控制应用, 2006, 33 (1): 20-24. [10] Kou Baoquan, Huang Xuzhen, Wu Hongxing, et al. Thrust and Thermal characteristics of electromagnetic launcher based on permanent magnet synchronous motors[J]. IEEE Transactions on Magnetics, 2009, 45(1): 358-362. [11] Changsoo Jang, Jong Young Kim, Yung Joon Kim, et al. Heat transfer analysis and simplified thermal resistance modeling of linear motor driven stages for SMT applications[J]. IEEE Transactions on Components and Packaging Technologies, 2003, 26(3): 532-539. [12] Zhu J G, Ramsden V S. Two dimensional measurement of magnetic field and core loss using a square specimen tester [J]. IEEE Trans. Magn., 1993, 29(1): 2995-2997. [13] 魏永田, 孟大伟, 温嘉斌. 电机内热交换[M]. 北京: 机械工业出版社, 1998. [14] 弗兰克P. 英克鲁佩勒, 大卫P. 德维特, 等. 传热和传质基本原理[M]. 葛新石, 叶宏, 译. 1版.北京: 化学工业出版社, 2009. [15] 安娜-马里娅·比安什, 伊夫·福泰勒,雅克琳娜·埃黛. 传热学[M]. 大连: 大连理工大学出版社, 2008. [16] Inamura S, Sakai T, Sawa K. A temperature rise analysis of switched reluctance motor due to the core and copper loss by FEM[J]. IEEE Trans. Magn., 2003, 39(3): 1554-557. [17] Trigeol J F, Bertin Y, Lagonotte P. Coupling control volume modeling in fluid and lumped thermal model—application to an induction machine[C]. Proc. Annual Conference of the IEEE Industrial Electronics Society, 2006: 4829-4834. |
|
|
|