|
|
MMC-UPQC Coordinated Control Method Based on Fixed Active Current Limit Value Control |
Lu Jingjing,Xiao Xiangning,Zhang Jian,Xu Yunfei |
State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China |
|
|
Abstract This paper applies the topology of modular multilevel converter(MMC) to the unified power quality conditioner(UPQC). In order to improve the comprehensive compensation functions of MMC-UPQC at the high voltage, large capacity power quality environment, the paper analyzes the voltage sag compensation capability of UPQC’s series MMC theoretically in detail. The topology mechanism of MMC-UPQC is given; the time domain expressions are calculated with the voltage sag value, the compensation duration, the main circuit and MMC parameters and so on, a coordinated control design method for UPQC is proposed, which is the fixed active current limit value control allowing the reduction of the common DC link voltage based on the traditional fixed DC voltage control. Define and calculate two voltage thresholds dividing the MMC-UPQC operation into the aforementioned states. The MMC-UPQC system simulation results under PSCAD/EMTDC indicate that the theoretical analysis is effective and correct. The simulation results also illustrates that the proposed coordinated control could improve voltage sag compensation time and amplitude supplied by UPQC.
|
Received: 25 January 2014
Published: 13 April 2015
|
|
|
|
|
[1] He Jinwei, Li Yun Wei, Blaabjerg F. Flexible microgrid power quality enhancement using adaptive hybrid voltage and current controller[J]. IEEE Transac- tion on Industrial Electronics, 2014, 61(6): 2784- 2794. [2] 张坤, 毛承雄, 陆继明, 等. 基于储能的直驱风力发电系统的功率控制[J]. 电工技术学报, 2011, 26(7): 7-14+43. Zhang Kun, Mao Chengxiong, Lu Jiming, et al. Power control strategy of directly driven wind turbine with energy storage system[J]. Transaction of China Electrotechnical Society, 2011, 26(7): 7-14+43. [3] Akagi H. New trends in active filters for power conditioning[J]. IEEE Transactions on Power Delivery, 1996, 21(1): 218-224. [4] Han B, Bae B, Kim H, et al. Combined operation of unified power-quality conditioner with distributed generation[J]. IEEE Transactions on Power Delivery, 2006, 21(1): 330-338. [5] 屠卿瑞, 徐政, 姚为正. 模块化多电平换流器型直流输电电平数选择研究[J]. 电力系统保护与控制, 2010, 38(20): 33-38, 44. Tu Qingrui, Xu Zheng, Yao Weizheng. Selecting number of voltage levels for modular multilevel converter based HVDC[J]. Power System Protection and Control, 2010, 38(20): 33-38, 44. [6] 谭智力, 朱冬姣, 陈坚, 等. 一种三相四线统一电能质量调节器的零稳态误差控制策略[J]. 电工技术学报, 2011, 26(10): 77-83. Tan Zhili, Zhu Dongjiao, Chen Jian, et al. A new zero steady-state error control strategy used in three-phase four-wire UPQC[J]. Transaction of China Electrotech- nical Society, 2011, 26(10): 77-83. [7] 梁祖权, 束洪春. 新型UPQC直流电压的PI λ D μ 控制[J]. 电工技术学报, 2010, 25(2): 147-151, 157. Liang Zuquan, Shu Hongchun. Novel UPQC DC voltage research of PI λ D μ controller[J]. Transaction of China Electrotechnical Society, 2010, 25(2): 147-151, 157. [8] 张旭, 杨学友, 刘常杰. 模型预测控制在统一电能质量调节器中的应用[J]. 电网技术, 2010, 34(5): 35-40. Zhang Xu, Yang Xueyou, Liu Changjie. Application of model predictive control in unified power quality conditioner[J]. Power System Technology, 2013, 34(5): 35-40. [9] 黄敏, 查晓明, 陈允平. 并联型电能质量调节器的模糊变结构控制[J]. 电网技术, 2002, 26(7): 11-14. Huang Min, Zha Xiaoming, Chen Yunping. Fuzzy variable structure associated control of shunt unified power quality conditioner[J]. Power System Technology, 2002, 26(7): 11-14. [10] 杨达亮, 卢子广, 杭乃善. 基于情感智能控制器的统一电能质量调节器[J]. 电力系统保护与控制, 2013, 41(20): 118-124. Yang Daliang, Lu Ziguang, Hang Naishan. Unified power quality conditioner using emotional intelligent controller[J]. Power System Protection and Control, 2013, 41(20): 118-124. [11] 张志超, 魏富建, 王义峰. 单周期控制策略在统一电能质量调节器中的应用研究[J]. 电力系统保护与控制, 2009, 37(22): 28-33. Zhang Zhichao, Wei Fujian, Wang Yifeng. Applied research on one-cycle control method of unified power quality conditioner[J]. Power System Protection and Control, 2009, 37(22): 28-33. [12] 李鹏, 杨以涵. 基于H ∞ 控制理论的UPQC串并联单元协调控制的实现[J]. 中国电机工程学报, 2006, 26(20): 91-97. Li Peng, Yang Yihan. Realization for coordinated control of UPQC series unit and shunt unit based on H ∞ control theory[J]. Proceedings of the CSEE, 2006, 26(20): 91-97. [13] Khadkikar V, Chandra A. UPQC-S: A novel concept of simultaneous voltage sag/swell and load reactive power compensations utilizing series inverter of UPQC[J]. IEEE Transactions on Power Electronics, 2011, 26(9): 2414-2425. [14] Makoto H, Ryo M, Hirofumi A. Control and analysis of the modular multilevel cascade converter based on double-star chopper-cell(MMCC-DSCC)[J]. IEEE Transactions on Power Electronics, 2011, 26(6): 1649- 1658. [15] Iurie A, Malabika B, Michael F C. DC link voltage control of UPQC for better dynamic performance[J]. Electric Power System Research, 2011, 81(9): 1815- 1824. [16] 周晖, 齐智平. 动态电压恢复器检测方法和补偿策略综述[J]. 电网技术, 2006, 30(6): 23-29. Zhou Hui, Qi Zhiping. A survey on detection algorithm and restoring strategy of dynamic voltage restorer[J]. Power System Technology, 2006, 30(6): 23-29. [17] Gum T S, Hee J L, Tae S N, et al. Desigh and control of a modular multilevel HVDC converter with redundant power modules for noninterruptible energy transfer[J]. IEEE Transactions on Power Delivery, 2012, 27(3): 1611- 1619. |
|
|
|